

1 of 16

Size: 4.6in x 2.4in x 0.55in (116.8mm x 61mm x 13.9mm)

- Wide Input Voltage Range
- Industry Standard Full Brick Package
- High Reliability & High Efficiency, & High

- Vehicles

- Low Ripple & Noise
- Over Current, Short Circuit, Over Voltage, and **Over Temperature Protection**
- Input Over Voltage & Under Voltage Protection
- Designed to meet UL/IEC/EN60950/GB49943

DESCRIPTION

The DCEV1000 series of DC/DC converters offers up to 1000 watts of output power in a 4.6" x 2.4" x 0.55" industry standard full brick package. This series consists of a single output models with wide input voltage range and active current share. Each model in this series features high reliability, high efficiency, high power density, low ripple and noise, as well as protection against over current, short circuit, over voltage, over temperature, and input over voltage and under voltage conditions. This series is designed to meet RoHS5 and UL/IEC/EN60950/GB49943 standards.

			Ν	NODEL SE	ELECTION ⁻	TABLE				
Model Number	Input Voltage	Output	Output (Current	Typ. Ripple	Min. Ef	ficiency	Typ. E	fficiency	Rated Output
	Range	Voltage	Min Load	Max Load	& Noise	50% Load	100% Load	50% Load	100% Load	Power
DCEV1000-500S12		12VDC	0A	70A	100mV	90.8%	91.0%	92.8%	93.0%	840W
DCEV1000-500S28	500VDC	28VDC	0A	35.7A	200mV	91.5%	91.5%	93.5%	93.5%	1000W
DCEV1000-500S36	(380~650VDC)	36VDC	0A	27.8A	200mV	92.5%	92.5%	94.5%	94.5%	1000W
DCEV1000-500S48		48VDC	0A	20.83A	300mV	92.0%	92.5%	94.0%	94.5%	1000W

SPECIFICATIONS

All specifications are based on Tc=25°C, Rated Input Voltage, Rated Output Voltage, and Full Load unless otherwise noted. We reserve the right to change specifications based on technological advances.

SPECIFICATION	TEST CO	ONDITIONS	Min	Тур	Max	Unit
INPUT SPECIFICATIONS						
		380	500	650	VDC	
Input Voltage Range	Absolute Maximum Operating Input \			650	VDC	
Input voltage Range	Absolute Maximum Non-Operating Ir	nput Voltage 12VDC Output			700	VDC
	Range, Continuous	Others	-0.3		700	VDC
Input Current	Vin=380VDC, Po=840W	12VDC Output Models			2.8	A
	Vin=380VDC, Po=1000W	Others			3	
No-Load Input Current	Vin=500VDC, Io=0A			40	60	mA
Input Current Transient	Vin=500VDC, External High-Frequer 12µH inductance	ncy, low ESR 22µF electrolytic capacitor			3	A ² s
Input Terminal Ripple Current	Vin=500VDC, Full Load, see fig. 3 fo	r test method		200	400	mA
Input Capacitor	High-Frequency, low ESR aluminum ≥800VDC (low temperature <-25°C, i capacitor at the input)	electrolytic capacitor, withstand voltage in parallel with a $2.2\mu F$, 1000VCBB	22	47		μF
		Turn-Off Threshold	345	355	365]
Input Under-Voltage Protection	28VDC Output: Io=17.85A 36VDC Output: Io=13.9A	Turn-On Threshold	355	365	375	VDC
		Hysteresis		10		1
	12VDC Output: Io=35A	Turn-Off Threshold	675	685	700	
Input Over-Voltage Protection	28VDC Output: Io=17.85A 36VDC Output: Io=13.9A	Turn-On Threshold	650	665	680	VDC
		Hysteresis		20		
OUTPUT SPECIFICATIONS	· · · · ·					
	12VDC Output: Vin=500VDC, Io=35A	4	11.88	12	12.12	
Output Voltage Set Point	28VDC Output: Vin=500VDC, Io=17.	85A	27.2	28	28.28	VDC
Output Voltage Set Point	36VDC Output: Vin=500VDC, Io=13.	36VDC Output: Vin=500VDC, Io=13.9A			36.36	
	48VDC Output: Vin=500VDC, Io=10.		47.52	48	48.48	
	12VDC Output: Vin=380-350VDC, Io	,	11.64		12.36	
Output Voltage Range	28VDC Output: Vin=380-650VDC, Io	=0-35.7A, Tc=-40~80°C	27.16	28	28.84	VDC
Output Voltage Ralige	36VDC Output: Vin=380-650VDC, Io	=0-27.8A, Tc=-40~90°C	24.92		37.08	VDC
	48VDC Output: Vin=380-650VDc, Io-	=0-20.83A, Tc=-40~90°C	46.56		49.44	

5/16/2019	Wall Industries, Inc. • Tel: 603-778-2300 • Toll Free: 888-597-9255 •	Page
3/10/2019	website: www.wallindustries.com • e-mail: sales@wallindustries.com	i aye

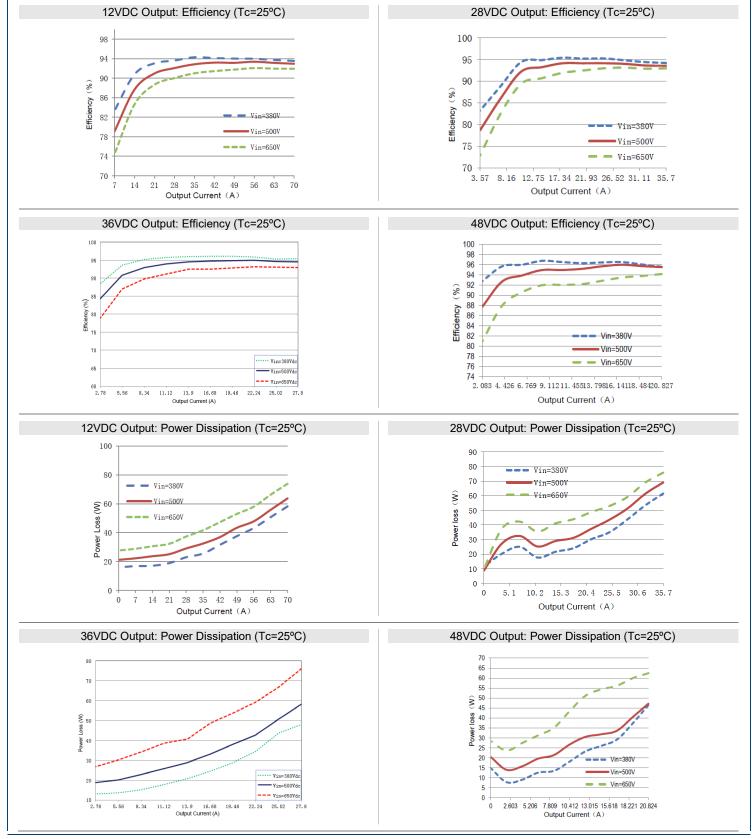
SPECIFICATIONS							
All specifications a	are based on Tc=25°C, Rated Input Volta			otherwise n	oted.		
SPECIFICATION		fications based on technological adva		Turp	Mox	Linit	
SPECIFICATION OUTPUT SPECIFICATION (Cont.)	TEST CON	IDITIONS	Min	Тур	Max	Unit	
Setting Accuracy	Vin=380-650VDC, Io=0-Max Load				±1	%	
Line Regulation	Vin=380-650VDC, Io=Max Load				±0.20	%	
Load Regulation	Vin=500VDC, Io=0-Max Load				±0.20	%	
Voltage Trim Range ⁽¹⁾			-10		+10	%	
Total Output Power ⁽¹⁾	lomax		10	See	Table	70	
Output Current Range ⁽¹⁾	Pomax=840W		0	000	70	A	
Output Busbar Voltage of Current Sharing	Vout=12VDC, Iomax		4.75	5.00	5.25	VDC	
Current Sharing Sensitivity	12VDC Output: Io=35-70A, 28VDC Out			±5	±10	%	
(li/le-Σl/nle)	lo=13.9-27.8A, 48VDC: lo=10.42-20.83	A	0.0	11.0	12.0		
Auxiliary Power Output Voltage	Output Current 0-20mA		9.0	11.0	13.0	VDC	
Auxiliary Power Output Current				100	20	mA	
		12VDC Output		100	200		
Ripple and Noise (Peak to Peak)	Test method see fig. 4	28VDC Output		200	400	mV	
		36VDC Output		200	360		
		48VDC Output	4000	300	600		
\mathbf{O} that \mathbf{O} are the (2)	12VDC Output		4000	6200			
Output Capacitor ⁽²⁾	28VDC & 36VDC Output		1000	1500		μF	
	48VDC Output		560	670	4=000		
		12VDC Output			15000		
Output Capacitance	Full Resistive Load	28VDC Output			1	F	
ouput ouputitation		36VDC Output			3000		
		48VDC Output			1500		
Turn-On Rise Time	10% Vout to 90% Vout (rated output ca			20	40	ms	
Start Up Time	Input voltage at under-voltage recovery				2000	ms	
	point to 10% Vout	28VDC Output		500	1000		
	12VDC Output: 25%-50%-25%, 50%-75	5%-50% lout (max), Overshoot Settling Time		300	600	mV	
	di/dt=2.5A/µs ⁽³⁾		700	2000	μs		
	28VDC Output: 25%-50%-25%, 50%-75		500	1000	mV		
Transient Response	di/dt=2.5A/µs, external output capacitar capacitor or polymer capacitor)	settling Time		300	500	μs	
·	36VDC Output: 25%-50%-25%, 50%-75	5%-50% lout (max), Overshoot		1200	1800	mV	
	di/dt=2.5Aµs, external output capacitan		2000	4000	μs		
	48VDC Output: 25%-50%-25%, 50%-75		1200	2000	mV		
	di/dt=2.5A/µs, external output capacitar		2000	4000	μs		
Output Voltage Overshoot		ce 560µF Settling Time			5	%Vout	
Operating Transient Protection	Absolute Maximum Rating, ≤1s				675	VDC	
	12VDC Output: Tc=-40~100°C, 28VDC	Output: Tc=-40~80°C, 36VDC &					
Temperature Coefficient	48VDC Outputs: Tc=-40~90°C				±0.02	%/°C	
REMOTE ON/OFF CONTROL							
Off-State Voltage			2.4		18.0	VDC	
On-State Voltage			-1.0		0.8	VDC	
Control Current					6	mA	
Remote Turn-On Rise Time	ON/OFF startup. 10% Vout to 90% Vou			20	40	ms	
Remote Start-Up Time	ON/OFF startup to 10% Vout	12VDC, 36VDC, & 48VDC Outputs 28VDC Output		400 200	1000 400	ms	
Voltage Between ON/OFF (+) and ON/OFF (-)	Absolute Maximum Rating, Continuous	•	-2		18	VDC	
PROTECTION					1		
Short Circuit Protection				See Ap	p Notes		
	Vin=500VDC, Hiccup Mode	12VDC Output	76	84	92		
	Vin=500VDC, first constant current	28VDC Output	40	42	44		
Over Current Protection	mode, then hiccup, then auto recovery	48VDC Output	23	25	27	A	
	Vin=500VDC, hiccup mode	36VDC Output	30.5	33.4	36.1		
		12VDC Output, Io=35A	14.0	15.0	16.0		
	Vin=500VDC, protection mode lockup.	28VDC Output, Io=17.85A	37	39	41		
Over Voltage Protection	Entering a power outage or dog CNT	36VDC Output, Io=17.00A	42	46	50	VDC	
	remote ca reboot.	48VDC Output, Io=10.42A	57	62	67	-	
		57	02	01			

All specification					tput Voltage, and Full Lo		otherwise n	oted.		
SPECIFICATION	vve reserve t	TEST CON			ed on technological adva	nces. Min	Тур	Max	Unit	
PROTECTON (CONT.)		1201 001				IVIIII	- yp	INICIA	Orm	
		12VDC Output 28VDC Output 36VDC & 48VDC Outputs		Trip Po Restar	t	100 90	110 100	120 110	-	
Over Temperature Protection	PCB (near the thermistor)			Hyster Trip Po Restar	pint t	80 70	10 90 80	100 90	°C	
	temperature			Hyster Trip Po Restar	pint t	90 80	10 100 90	110 100	-	
ENVIRONMENTAL SPECIFICA	TIONS			Hyster	esis		10			
			12VF	DC Outp	ut	-40		+100		
Operating Temperature	Case Tempera Maximum Ratir		28VE	DC Outp		-40 -40		+80 +90	°C	
Storage Temperature	Ambient Tempe	erature, Absolute Maxim				-55		+125	°C	
Operating Relative Humidity Storage Relative Humidity	Non-Condensir	ng				5		95 95	% %	
Solderability		g, Less than 10s						260 425	°C	
Cooling	manual Wording	g, 2000 than 00				Heatsi	nk/Air Coo	ling/Water C	Cooling	
MTBF	Vin=500VDC, F	Full Load Output, Tc=25	°C			2x10 ⁶			H	
GENERAL SPECIFICATIONS Efficiency	Vin=500VDC, 1	⁻c=25°C					See	Table		
Switching Frequency							300		KH:	
Isolation Voltage		Condition: 10mA/60s, rise rate 500VDC/s, no breakdown, no arc Output to Case				3535	0VDC 5VDC 0VDC			
Isolation Resistance PHYSICAL SPECIFICATIONS	90% relative hu	imidity, standard atmosp					≥100		MΩ	
Weight								z (225g) 4in x 0.55in		
Dimensions (L x W x H)						(116.8mm x 61mm x 13.9mm)				
Baseplate Material						Alumir	ium Basepl	late + Plasti	c Case	
SAFETY CHARACTERISTICS			-							
	Deleted					E	UL 60950-		N 6095	
Safety Approvals	Related	certification according to customer's demand			CE TU\ CQC/CCC	/			C 6095 N 6095 GB 49	
					CSA			C22.2 No	. 6095	
EMC	Tested togethe pass	r with customer system,	EM:		Conducted Emission Spike Signal				-STD-4 -STD-4	
RoHS5				RoHS	compliant materials, lead	t l				
	MIL-STD-810F			Environmental Engineering considerations and laboratory tests						
Reference Standards and		MIL-STD-461E			E Requirement for the control of electromagnetic interference characteristics of subsystems and equipment			nce is and		
Specifications					MIL-STD-202	2	Test methods for electronic and electric			
		MIL-HBDK-217F			-	equi	ction of elect pment			
					MIL-M-2878	Module		d electronic fication	genera	

NOTES

- 1. See Application Notes: Output Trim
- 2. See Application Notes: Typical application circuit
- 3. Minimum external output capacitance required (solid capacitor or polymer capacitor)
- 4. Under conditions of the above configuration, testing in accordance with specified level, without any problems, the test can be directly judged through (PASS).
- 5. Under conditions of the above configuration, testing in accordance with specified level, if there is an output shutdown because of occurring power module OVP or LVP or power module failure because of device damage, the test is not passed (FAIL).
- 6. Under conditions of the above configuration, testing in accordance with specified level, a temporary output voltage fluctuation occurred. If the output voltage of the power module does not exceed the regulation accuracy, return to normal immediately when test stops, and there was no module reset, device damage, the test results can be judged through (PASS).
- Under conditions of the above configuration, testing in accordance with specified level, a temporary output voltage fluctuation occurred. If output
 voltage fluctuation is out of regulation accuracy, it cannot directly determine whether it is OK in this case. We need further verification on
 application products.
- 8. This product is Listed to applicable standards and requirements by UL
- *Due to advances in technology, specifications subject to change without notice.

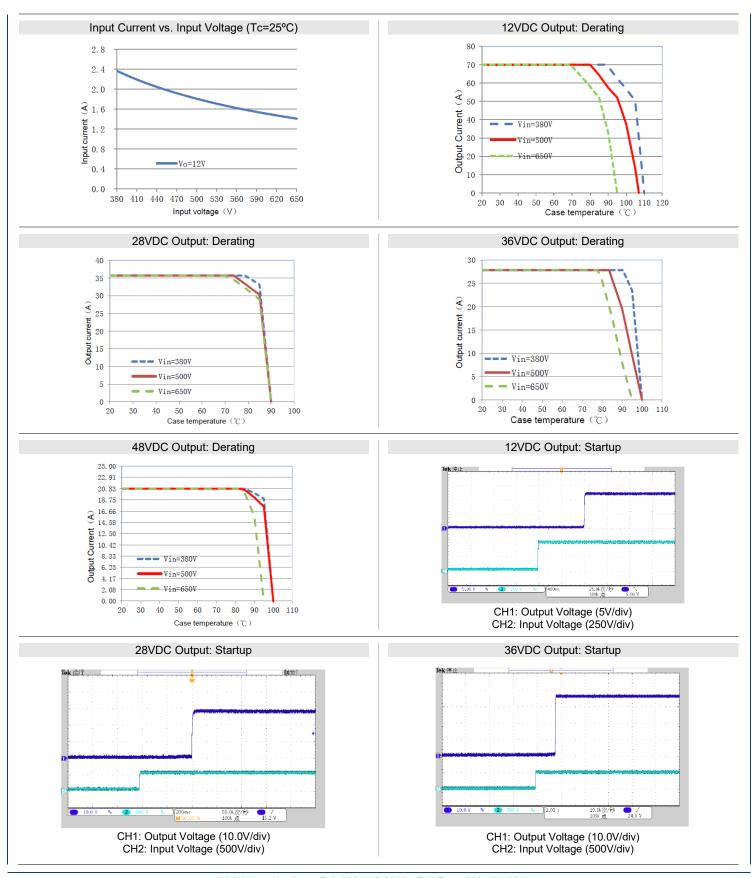
ADDITIONAL TESTS -


ENVIRONMENTAL	TESTS		
TESTS		CONDITIONS	METHODS
High Temperature	Storage Operating	125°C, 24H 65°C, 24H; input low voltage, standard voltage, high voltage of each for 8H	MIL-STD-810 High Temperature
Low Temperature	Storage Operating	-55°C, 24H -40°C, 24H; input low voltage, standard voltage, high voltage of each for 8H	MIL-STD-810 Low Temperature
Temperature Shock	Storage	-55°C~125°C; Hold Time: 30 min; Cycles: 25 times; high and low temperature switching time less than 1min.	MIL-STD-810 Temperature Shock, Program
Operating		-40°C~65°C; Hold Time: 30 min; Cycles: 25 times; high and low temperature switching time less than 1 min.	
HTOL		Rated input voltage, maximum operating temperature, 1000h	MIL-STD-202 Life (at elevated ambient temperature)
Humidity (steady state	e)	40°C, 95%, 96H	MIL-STD-202 Humidity (steady state)
Humidity (alternating)		25°C~65°C; 95%; 24h/cycle; cycles: 10 times	MIL-STD-202 Moisture Resistance
Salt Fog		NaCl: 5±1%; PH:6.5~7.2 (35±2°C); 96H	MIL-STD-202 Salt Spray, Test Conditions A
Fungus		Under the provisions of MIL-STD-810 mold environment, module appearance impact assessment was no more than level 2 after 28d	Meets MIL-STD-810 Test Conditions
Low Air Pressure		58.53kPa, 16H	MIL-STD-202 Barometric Pressure (reduced Test Conditions F
Sinusoidal Vibration		10-55Hz, 0.75mm, 2H/each axial	MIL-STD-202 Vibration
Random Vibration		50-2000Hz, (2 m/s²) ²/Hz; 50-100Hz, +6dB/OTC; 1000-2000Hz, -6dB/OTC; 30min/each axial	MIL-STD-202 Random Vibration, Test Conditions I-A
Shock		500m/s², 11ms; 3 shocks for three mutually perpendicular 6 directions of each	MIL-STD-202 Shock (specified pulse); Test Conditions A

RELIABILITY TESTS

Tests	Official Sample Stage	Small Quantities Stage	Reasons
A. HALT			
High Temperature		/	
Low Temperature	\checkmark	/	The new series of prototype products
Temperature Cycling	/	1	 Important products with high reliability requirements
Vibration		1	 Applications in complex environments
Comprehensive Stress Test		/	Customer requirements
Operating Temperature		/	
B. Accord with Test of Quantitativ	e Requirements Reliability		
Accord with test of reliability quantitative requirements	/	\checkmark	 The new series of prototype products Important products with high reliability requirements Applications need quantitatively MTBF assessment Customer Requirements
C. Durability Test			
Temperature Shock	/	$\overline{\mathbf{v}}$	The new series of prototype products
High temperature/ High Humidity	/	$\overline{\mathbf{v}}$	Important products with high reliability
Life Test	1	\checkmark	 requirements Applications in complex environments Customer Requirements Products required assessment of durabition

CHARACTERISTIC CURVES

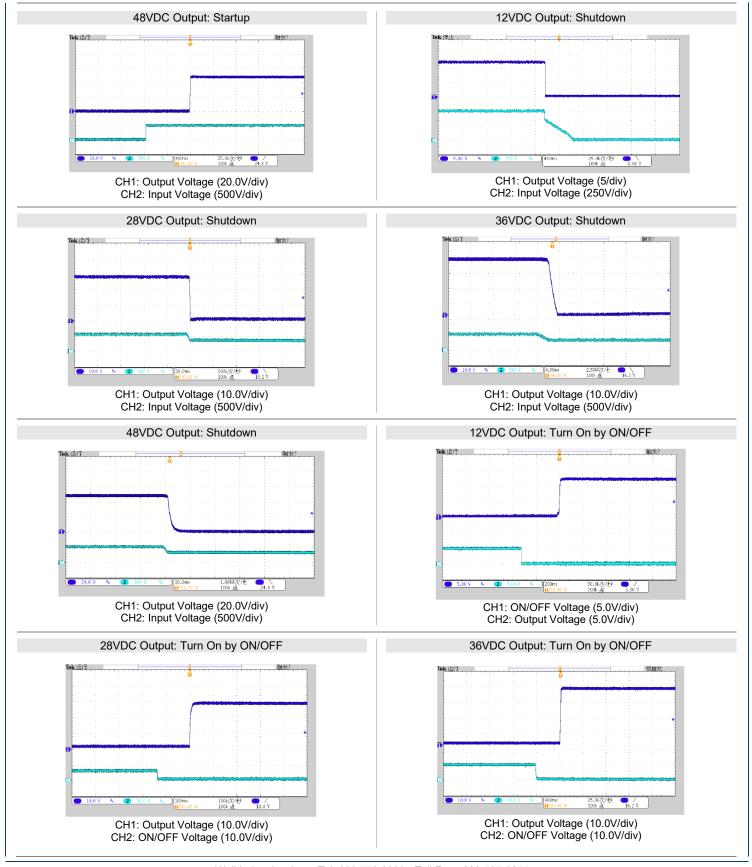


Rev B

Wall Industries, Inc. • Tel: 603-778-2300 • Toll Free: 888-597-9255 • website: www.wallindustries.com • e-mail: sales@wallindustries.com

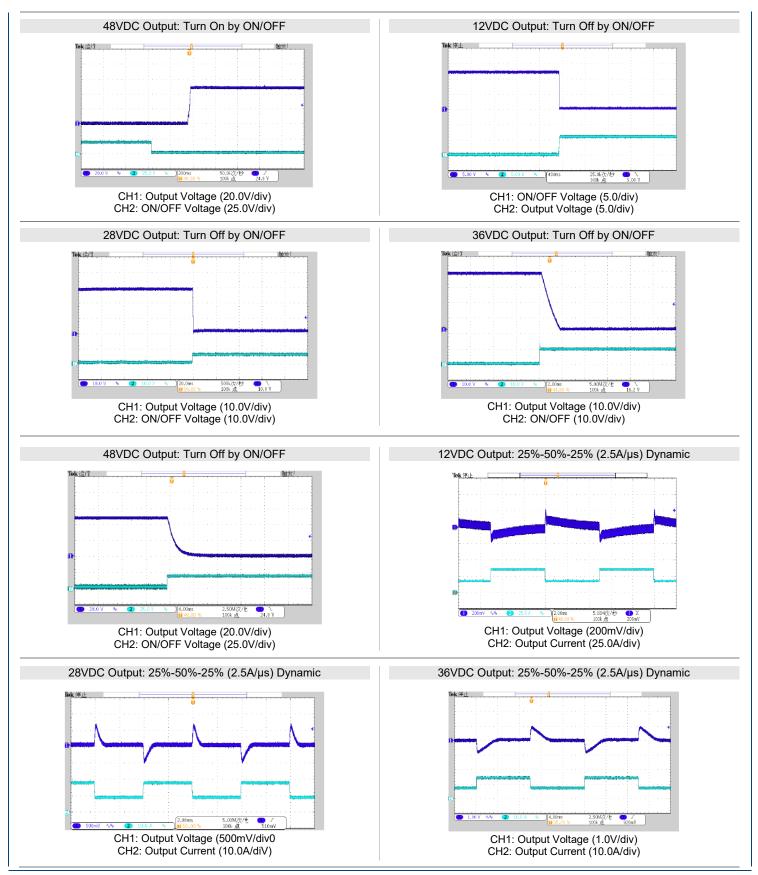
Page 5 of 16

5/16/2019


Wall Industries, Inc. • Tel: 603-778-2300 • Toll Free: 888-597-9255 • website: www.wallindustries.com • e-mail: sales@wallindustries.com

Page 6 of 16

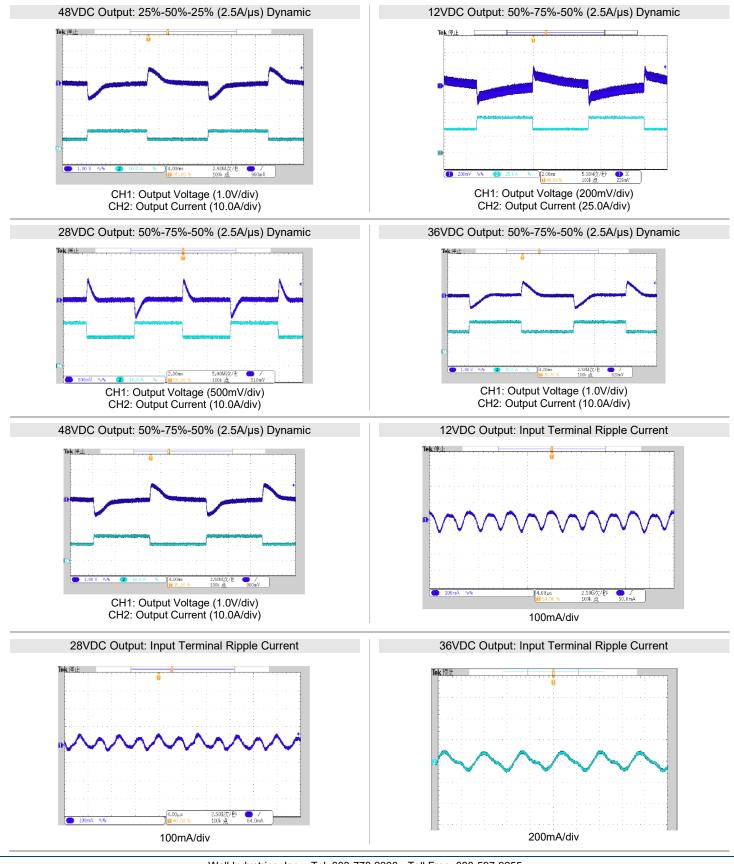
840-1000 Watts Full Brick DC/DC Converter Single Output



Rev B

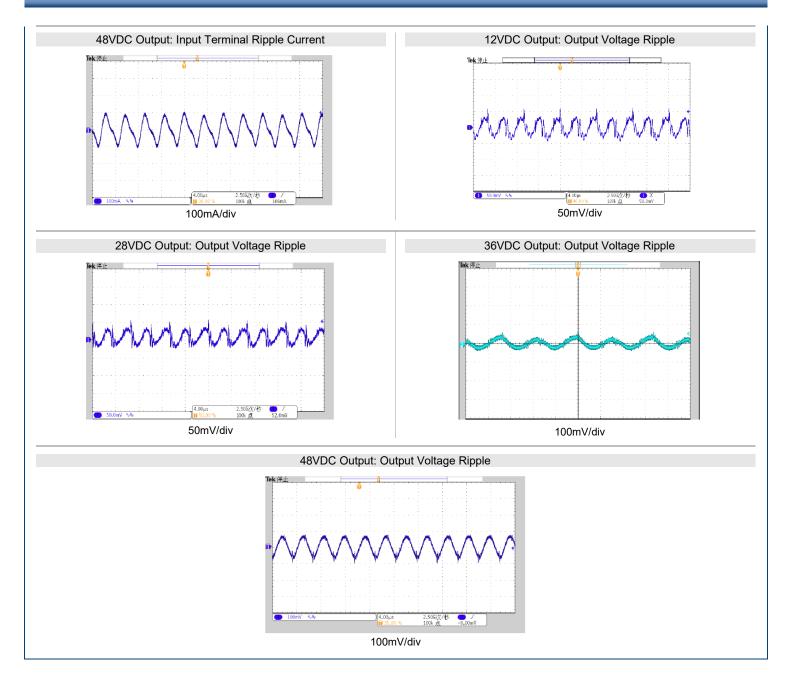
Wall Industries, Inc. • Tel: 603-778-2300 • Toll Free: 888-597-9255 • website: www.wallindustries.com • e-mail: sales@wallindustries.com

Page 7 of 16



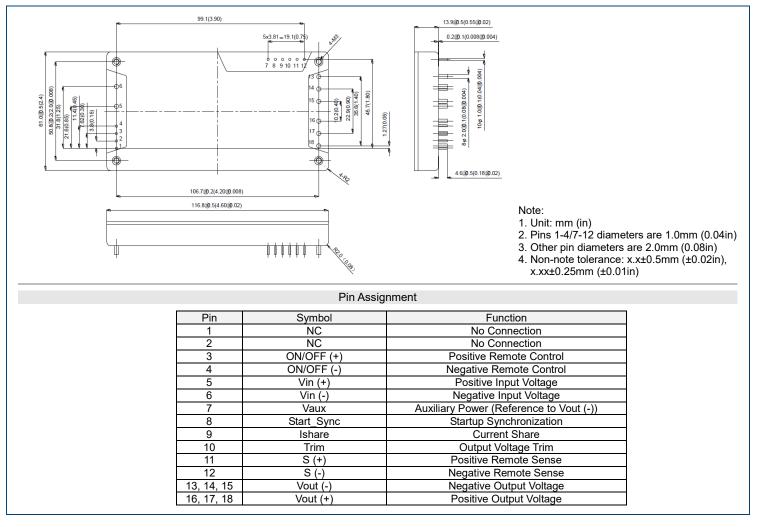
Wall Industries, Inc. • Tel: 603-778-2300 • Toll Free: 888-597-9255 • website: www.wallindustries.com • e-mail: sales@wallindustries.com

Page 8 of 16



5/16/2019

Wall Industries, Inc. • Tel: 603-778-2300 • Toll Free: 888-597-9255 • website: www.wallindustries.com • e-mail: sales@wallindustries.com


Page 9 of 16

MECHANICAL DRAWINGS

PACKAGING, STORAGE & TRANSPORT -

Packaging, Storage, & Transport Requirements

Packaging Requirements

- Packaging should be adequately protected during transport, no corrosion, degradation, or mechanical damage.
- Modules should be cleaned and dried
- Packaging and cushion layer materials should not produce electrostatic and should be resistant to corrosion
- Unless there are provisions in the contract, each unit packaging quantity should be determined by supplier.
- Shape and size of the inner package should be uniform and have minimum weight and minimum volume.
- Packaging labeling requirements

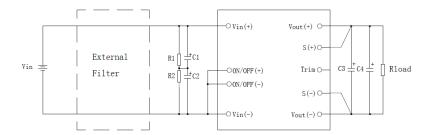
Storage Requirements

- Unused products should be placed in the box, the ambient temperature of warehouse should be -10~40°C; relative humidity is less than 80%, dry, ventilated, non-corrosive gases.
- Crates from the ground should be more than 20cm, from the walls, heat, vent, window of at least 50cm.
- Under the conditions of this provision the storage period is 2 years, more than 2 years after it should be re-tested

Transport Requirements

- Crates should be strong during transport
- Outside of box should comply with relevant provisions of the national standard and there are "Handle with Care" & "Moistureproof" and other signs one boxes.
- Product boxes can be transported by any means of transport. Transportation should avoid direct contact with rain, snow, and mechanical shock.

Wall Industries, Inc. • Tel: 603-778-2300 • Toll Free: 888-597-9255 • website: www.wallindustries.com • e-mail: sales@wallindustries.com



APPLICATION NOTES

Typical Application Circuit

Power supply modules have internal filter, which can meet general application requirements. If you need a better power system, you can add an external filter network on the input circuit. Typical application circuit is shown in Fig. 1.

Rev B

Fig. 1

Device recommended parameter values

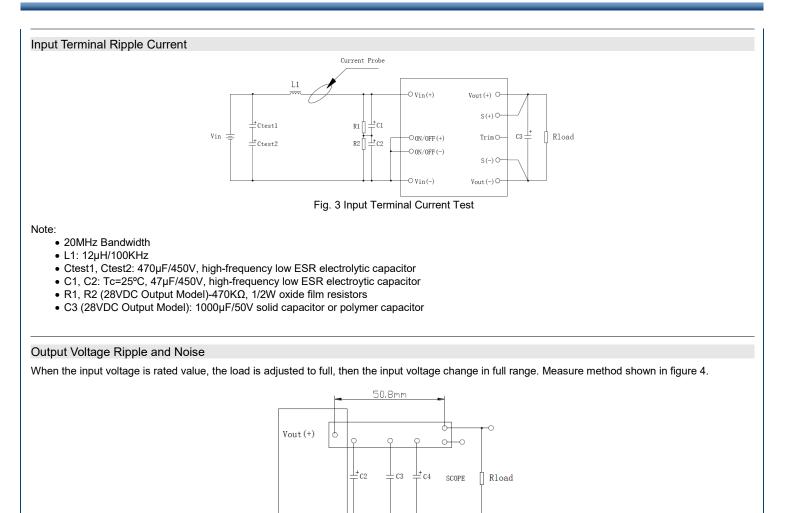
No.	Device Specific Description
R1, R2	470ΚΩ, 1/2W
C1, C2	Electrolytic Capacitors 47µF/450V
	12VDC Output Model: Electrolytic capacitor of high frequency, low ESR, good temperature
	characteristics 2200µFx1/25V
	28VDC Output Model: Solid Capacitor or Polymer Capacitor 1500μF/50V
C3	36VDC Output Model: Electrolytic capacitor of high frequency, low ESR, good temperature
	characteristics 1000µFx1/50V
	48VDC Output Model: Electrolytic capacitor of high frequency, low ESR, good temperature
	characteristics 220µFx1/63V
	12VDC Output Model: Solid capacitors 680µFx6/16V
C4	36VDC Output Model: Solid Capacitors 68µFx8/50V
	48VDC Output Model: Solid Capacitors 56µFx8/63V

Note:

- When ambient temperature is below -25°C, 4000µF solid capacitors need to be included for 12VDC output models (no more than 6 recommended), 500µF solid capacitors for 36VDC output models, & 450µF for 48VDC output models (no more than 8). When the output requires a larger capacitive load, electrolytic capacitors recommended (solid capacitors have low ESR, which will affect stability & reliability).
- When the ambient temperature is below -25°C, and the input voltage rises fast (e.g. greater than 10VDC/µs), in order to prevent an input surge voltage that is too high and causes damage to the module, it is recommended to add at least on 2.2µF/1000VDC CBB capacitor and not less than 20µF capacitor (at 10Khz conditions, -55°C) at the input, or add an additional anti-surge circuits. In practical applications, it is recommended to subject to actual test.
- When an EMI circuit is added, please match the input capacitance to prevent high surge at the input which causes damage to the module.
- There is no fuse inside the module. In order to improve security, please add a series fast-acting fuse at the module's input. Fuse connected to Vin (+) terminal, 10A fast-acting fuse recommended.
- · Connect with module terminals in shortest way.
- Please confirm capacitors allowable ripple value.

Remote Switch

Remote control mode: Negative logic


Control Mode		ON/OFF Level	
Control Mode	Low Level	NC	High Level
Negative Logic	ON	ON	OFF

Below is a simple ON/OFF connection figure

Switch off, power on		Vout (+) O
		S(+) O
5Vdc	O 0N/0FF (+)	Trim O
		S(-) O
		Vout (-) O
Fig	2 Control Mode	

Fig. 2 Control Wode

Note:

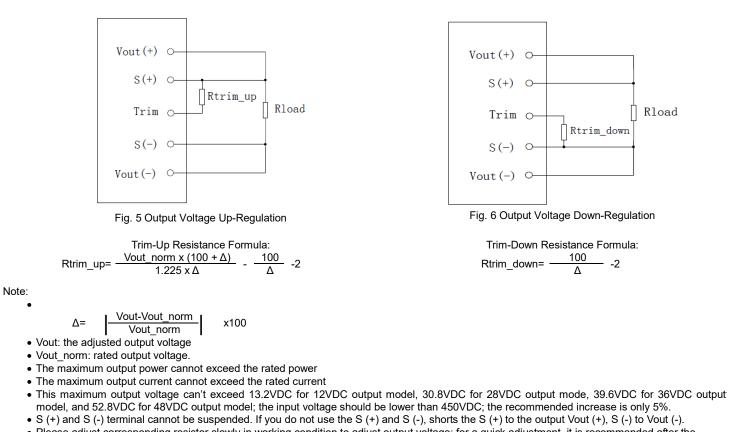
- 20MHz bandwidth
- C3: 12VDC Output Model: 4000µF/16V solid capacitor or polymer capacitor; 28VDC Output Model: 1000µF/50V solid capacitor or polymer capacitor; 36VDC Output Model: 470µFx1/50V(electrolytic capacitor) + 68µF x 50V (solid capacitor), 48VDC Output Model: 450µF/63V solid capacitors or polymer capacitors

12.7mm Fig. 4 Output Ripple and Noise Test

0--0

C4: 12VDC, 36VDC, & 48VDC Output Models: 1µF ceramic capacitor; 28VDC Output Model: 1µF/50V ceramic capacitor

Vout (-)


C5: 2VDC, 36VDC, & 48VDC Output Models: 10µF tantalum capacitor; 28VDC Output Model: 10µF/50V tantalum capacitor

25.4 mm

Output Trim

Resistance is connected between the Trim and S (+) or the Trim and S (-), then the output voltage can be increased or decreased in the 10.8-13.2VDC range for 12VDC output models, 25.2-30.8VDC range for 28VDC output models, 32.4-39.6VDC range for 36VDC output models, and 43.2-52.8VDC range for 48VDC output models. When resistance is applied between the Trim and S (+), output voltage increases. When resistance is applied between the Trim and S (-), output voltage decreases. In the adjustment process, the resistance should be placed as close as possible to power module terminals; if it doesn't need this feature, trim should not be connected.

· Please adjust corresponding resistor slowly in working condition to adjust output voltage; for a quick adjustment, it is recommended after the shutdown.

Output Remote Sense

This power module has output remote sense. It can automatically correct for voltage drop on the output lead. See Fig. 7: the S (+), S (-) respectively connected to the load via twisted-pair. The voltage between those ends is the rated output voltage. If you do not use the S (+) and S (-), shorts the S (+) tc the output Vout (+), S (-) to Vout (-).

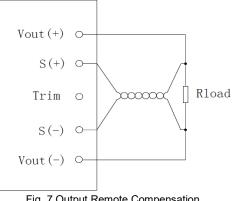
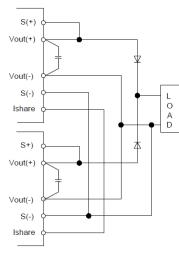


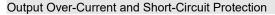
Fig. 7 Output Remote Compensation

Note:

- The maximum output voltage of the power module cannot exceed 110% of rated voltage.
- S (+), S (-) should be consistent with polarity of the output, otherwise the power module will go into protected status.
- Power module's maximum output power stays unchanged. If output voltage increases, output current should reduce accordingly.

Multiple Units in Parallel Feature



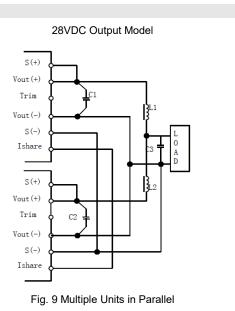

Fig. 8 Multiple Units in Parallel

N + 1 redundant parallel

N module requires N + 1 redundancy. Modules outputs required to be connected in parallel. Ishare pins of multiple units must be connected together, and note to avoid disturbances between cables. Voltage output terminal of each module connected in parallel through the isolation diode. Please note that to meet each module's output impedance symmetry before connecting. Isolated diode must meet current and voltage stress indices. Make sure that each module does not exceed the rated output power and rated output current at parallel application. It can support up to 10 modules in parallel (Fig. 8).

Note: Current Share in Parallel Error Formula Desicription

- n the number of modules in parallel
- i modules to calculate the current sharing sensitivity
- I1, I2...Ii....In (2≤n≤10) Output current of each tested power module
- le rated output current of each tested power module
- ΣI sum of output current of n tested power modules
- nle sum of rated output current of n tested power modules


When output is overload or short-circuited, if the output voltage is higher than the set voltage (approximately 6VDC for 12VDC & 28VDC models, approximately 28VDC for 36VDC output models, and 24VDC for 48VDC output models), power module goes into constant current mode. If the output voltage is lower than the set voltage (approximately 6VDC for 12VDC & 28VDC models, approximately 28VDC for 36VDC output models, and 24VDC for 12VDC & 28VDC models, approximately 28VDC for 36VDC output models, and 24VDC for 12VDC & 28VDC models, approximately 28VDC for 36VDC output models, and 24VDC for 48VDC output models, approximately 28VDC for 36VDC output models, and 24VDC for 48VDC for 48VDC models, approximately 28VDC for 36VDC output models, and 24VDC for 48VDC for 48VDC models.

Output Over-Voltage Protection

If the voltage across the output exceeds the output over voltage protection threshold, over-voltage protection circuit will run, power module's output will turn off, and enter the protection lock mode. No input or CNT remote can reboot it.

Over Temperature Protection

When aluminum PCB's (near the thermistor) temperature reached near 110°C (typ) for 12VDC output models, 90°C (typ) for 28VDC models, and 100°C (typ) for 36VDC & 48VDC models, over-temperature protection circuit will start working; power module's output is turned off; when temperature returns to 100°C (typ) for 12VDC models, 80°C (typ) for 28VDC models, and 90°C (typ) for 36VDC & 48VDC models, the power will automatically restart.

In parallel: Modules' outputs required to be connected in parallel. I share pins of multiple units must be connected together and note to avoid disturbances between cables. Output voltage terminal of each module are connected in parallel directly, please note that to meet each module output impedance symmetry before parallel connection. It can support up to 10 modules in parallel (Fig. 9).

Note: Current Share in Parallel Error Formula Desicription

- n the number of modules in parallel
- i modules to calculate the current sharing sensitivity
- I1, I2...In (2≤n≤10) Output current of each tested power module
- le rated output current of each tested power module
- Σ I sum of output current of n tested power modules
- nle sum of rated output current of n tested power modules
- C1, C2 The minimum outptu capacitance.
- L1, L2 ≥0.15uH
- C3 an additional ceramic/aluminum electrolytic capacitors. If necessary to filter output ripple, C3≥1000uF is recommended

USER INFORMATION -

Please note these warnings and cautions before using, improper operation may cause permanent damage to the power module or cause a fire. Make sure you have read the warnings and cautions before using the product.

Warning:

- When product is energized, keep hands and face away from the product to avoid accidental injury.
- Do not transform or strip product, as this may cause electric shock. If the user processes of transforms it, our company is not responsible for it.
 There are some areas of high temperature and pressure inside the product and you can get an electric shock or burned if touched. Do not touch the internal components.
- When product is energized, do not touch the case to avoid possible burns.

Cautions:

- Confirm the product's input/output connected with signal terminal correct in accordance with product instructions; when wiring it, turn off input.
- Add a 10A quick fuse or other over-current protection devices to the power module input terminals.
- Product diagrams and the parameters are for reference only. Please confirm the circuit and the validity of the parameters before completing circuit design.
- Please use power within scope of technical parameters. If it exceeds the range, it may cause permanent damage.
- Electrical hazards caused by input, output must be considered when using. Make sure the end user will not touch the product. Terminal device
 manufacturers must design appropriate protection program to ensure that no worker or tools will be in danger from accidentally touching power
 terminal
- Our company has final power of interpretation of product description. Without permission, it cannot be copied or reproduced in any way.

COMPANY INFORMATION -

Wall Industries, Inc. has created custom and modified units for over 50 years. Our in-house research and development engineers will provide a solution that exceeds your performance requirements on-time and on budget. Our ISO9001 certification is just one example of our commitment to producing a high quality, well-documented product for our customers.

Our past projects demonstrate our commitment to you, our customer. Wall Industries, Inc. has a reputation for working closely with its customers to ensure each solution meets or exceeds form, fit and function requirements. We will continue to provide ongoing support for your project above and beyond the design and production phases. Give us a call today to discuss your future projects.

Contact Wall Industries for further information:

Phone:	2 (603)778-2300
Toll Free:	2 (888)597-9255
Fax:	ﷺ (603)778-9797
E-mail:	sales@wallindustries.com
Web:	www.wallindustries.com
Address:	37 Industrial Drive
	Exeter, NH 03833

©2019 Wall Industries, Inc. Specifications subject to change without notice. Wall Industries is not responsible for typographical errors. The information contained herein is for informational purposes only. This information is provided by Wall Industries and we make no representations or warranties of any kind, express or implied, about the completeness, accuracy, reliability, suitability or availability with respect to the information contained in this document for any purpose. All product and manufacturer names are trademarks or registered trademarks of their respective companies.