

Size: 4.6in x 2.32in x 0.51in (116.8mm x 59mm x 2.9in)

FEATURES

- 90-300VAC (190-400VDC) Input Range
- Standard Full Brick Structure
- Low Output Ripple & Noise
- High Efficiency
- Power Density
- PMBus Communication
- RoHS6 Compliant

APPLICATIONS

- Servers/Storage
 Equipment
- Routers/Switches
- Telecommunications
 Equipment
- Enterprise Networks

- Input Under Voltage and Input Over Voltage
 Protection
- Output Over Current, Over Voltage, Over Temperature, and Short Circuit Protection
- Remote On/Off
- TUV, UL, CB, CE Certification
- UL60950-1, CSA C22.2 No. 60950-1, EN60950-1 and IEC60950-1 Compliant

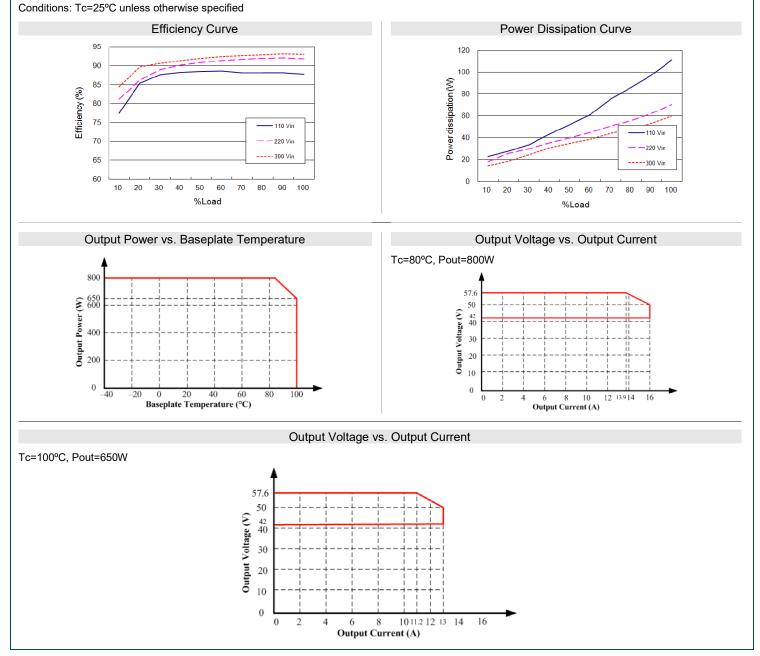
DESCRIPTION

The PSABR800-50S model of AC/DC converters offers 800 watts of output power in a 4.6" x 2.32" x 0.51" full brick package. This is a single output model with an input range of 90-300VAC (190-400VDC). Features of this model include high efficiency, remote on/off, power density, input under and over voltage protection, as well as output over current, over voltage, over temperature, and short circuit protection. This model is UL60950-1, CSA C22.2 No. 60905-1, EN60950-1, and IEC60950-1 and RoHS6 compliant and has TUV, UL, CB, and CE certification. Please contact factory for order details.

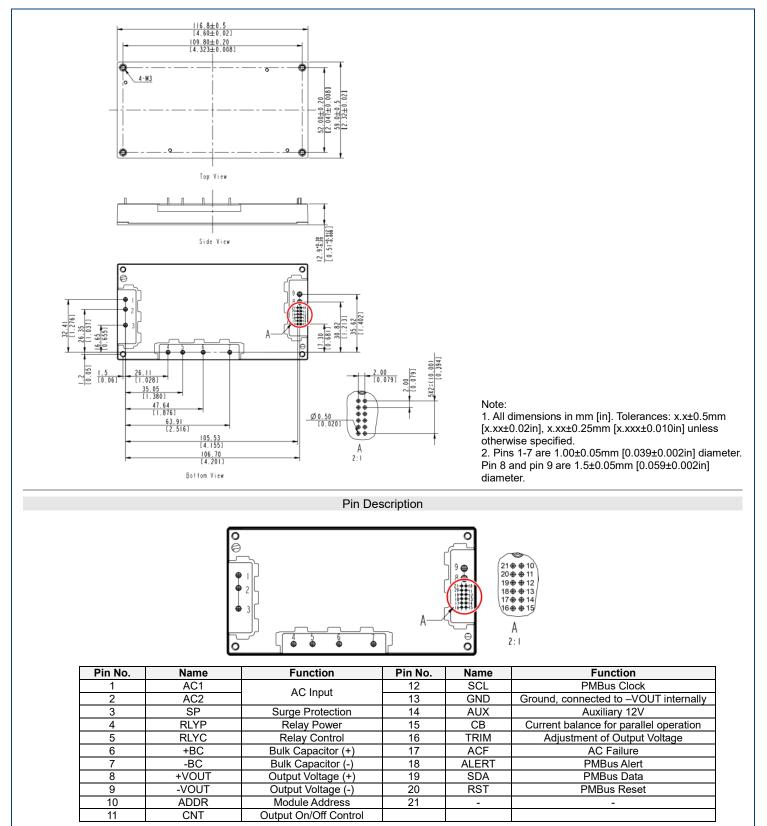
SPECIFICATIONS

All specifications are based on 25°C, Nominal Input Voltage, and Maximum Output Current unless otherwise noted. We reserve the right to change specifications based on technological advances.

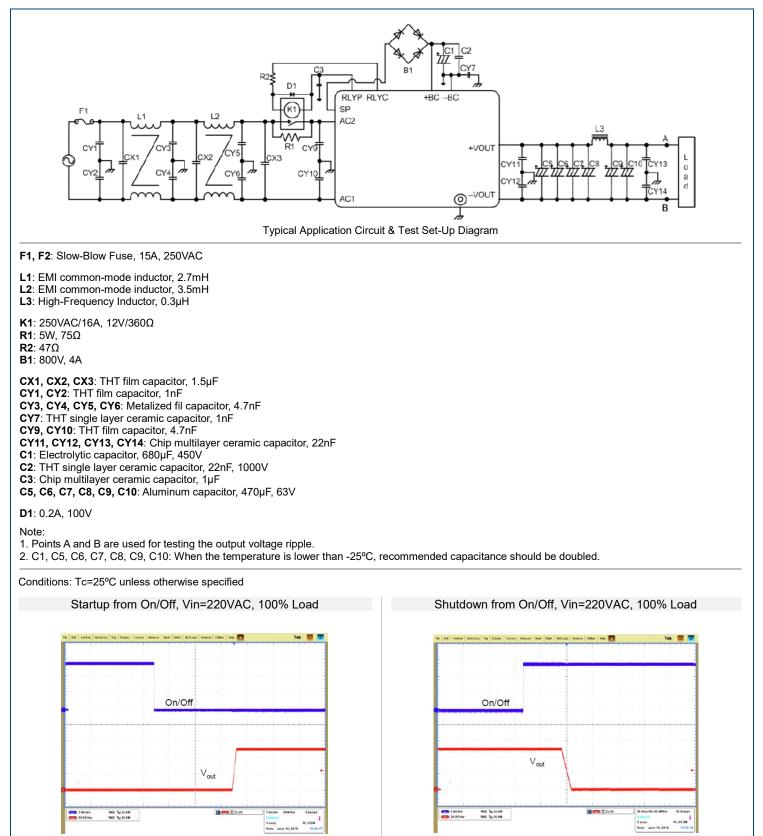
SPECIFICATION	TEST CONDIT	IONS	Min	Тур	Max	Unit
INPUT SPECIFICATIONS						
	AC		90	110/220	300	VAC
Operating Input Voltage Range	DC				400	VDC
Nominal Input Voltage			100		240	VAC
Turn-On Input Voltage			90	110/220	290	VAC
	AC				318	VAC
Absolute Maximum Input Voltage	DC				450	VDC
Input Frequency			45	50/60	66	Hz
Inrush Current	@Tc=25°C, 220VAC, ETSI EN300 132-	-3			40	A
have to Queen at	AC, @90VAC, 100% Load				11	
Input Current	DC, @190VDC, 100% Load			1	5	A
Power Factor	@Tc=25°C, 110/220VAC, 100% Load		0.95	0.99		
Total Harmonic Distortion (THD)	@Tc=25°C, 110/220VAC, 100% Load				10	%
OUTPUT SPECIFICATIONS	O				-	1
Output Voltage Setpoint	@Tc=25°C, 220VAC, 50% Load		49.75	50	50.25	VDC
Output Voltage Adjustment Range	Adjusted by PMBus Command or Trim		42		57.6	VDC
Line Regulation			-1		+1	%
Load Regulation			-2		+2	%
Output Voltage Regulation			-2		+2	%
Output Power ⁽¹⁾					800	W
Output Current					16	A
Auxiliary Output Voltage			10	12	14	V
Auxiliary Output Current					0.2	A
External Capacitance	Aluminum capacitor		2820		5640	μF
Bulk Capacitance for Boost Output	THT Single Layer Ceramic Capacitor		680		820	μF
	See Note 2				500	
Ripple & Noise ⁽²⁾⁽³⁾	See Note 3			1	750	mVp-p
Turn-On Delay Time					8	S
Output Voltage Rise Time					200	mS
Output Voltage Overshoot					5	%
	Current Change Rate: 0.1A/µs	Overshoot Amplitude			5	%
	Load: 25%-50%-25%; 50%-75%-50%	Recovery Time			200	μs
Output Transient Response	Current Change Rate: 1A/µs	Undershoot Amplitude	-		1500	mV
	Tc=25°C, load: 70-840W ⁽⁴⁾	Recovery Time	-		300	μs
Temperature Coefficient		receivery mile	-0.02		+0.02	%/°C



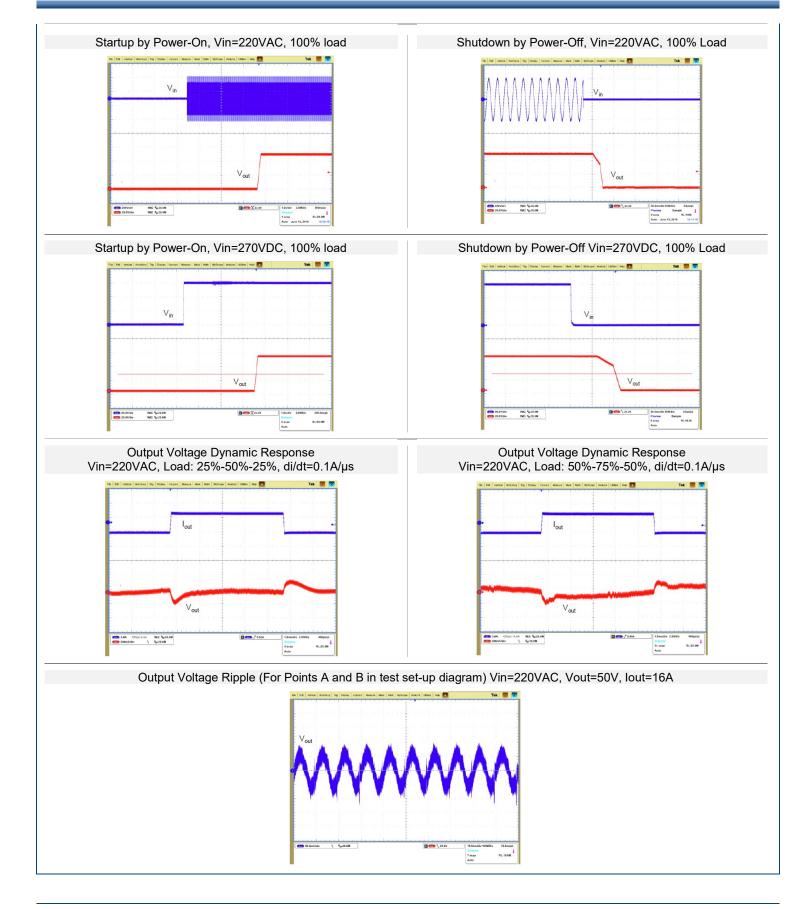
SPECIFICATIONS All specifications are	based on 25°C, Nominal Inp	put Voltage, an	d Maximum C)utput Current ur	less other	vise noted		
We	reserve the right to change	specifications	based on tech		ces.		Maria	11-14
SPECIFICATION PROTECTION		EST CONDITI	ONS		Min	Тур	Max	Unit
Output Short Circuit Protection						Self-Rec	overv	
			Default			17.5		
Output Over Current Protection	Self-Recovery, 42V ≤ Vout	:≤50V	Set Range		4		17.5	A
	y ,		Error		-1		1	1
Output Over Voltage Protection	Self-Recovery, can be set	to latch-off mod	e by PMBus		58	1	60	V
Output Over Temperature Protection	Self-Recovery		Internal Ten	nperature	100			°C
Output Over Temperature Protection	Sell-Recovery		Hysteresis		5			
			Protection T		300			_
		AC	Recovery TI	nreshold	290			VAC
Input Over Voltage Protection	Self-Recovery		Hysteresis		5		ļ	
	,		Protection T		415			
		DC	Recovery TI	nreshold	405		<u> </u>	VDC
			Hysteresis		5		05	
		40	Protection T				85 90	
		AC	Recovery TI	hreshold	5		90	VAC
Input Under Voltage Protection	Self-Recovery		Hysteresis Protection T	brochold	<u>с</u>		185	
		DC	Recovery TI				190	
		DC	Hysteresis	litestioid	5		190	
ENVIRONMENTAL SPECIFICATIONS			Trysteresis		5			
Baseplate Temperature (Tc)					-40	25	100	°C
Storage Temperature					-40	25	85	°Č
Altitude ⁽⁵⁾					-60		5000	m
Relative Humidity					5		95	%RH
MTBF	Tc=25°C, Telcordia SR332	Method 1 Cas	e 3; nominal i	nput, 80% load		1,200,000		Hours
GENERAL SPECIFICATIONS								
		Tc=25°C		Vin=220VAC	91.5	93.0		
Efficiency	100% Load	Vin=110V To=80°C Vin=220V		Vin=110VAC	88.5	90.0		%
Emoleney				Vin=220VAC	90.0	91.5		
				Vin=110VAC	86.5	88.0	0000	
		Input to Output	ut				3000	VAC
		· · ·					4242	VDC
Insulation Voltage	Leakage Current: <10mA	ge Current: <10mA Input to Baseplate				1500 2121	VAC VDC	
-	_					1500	VDC	
		Output to Bas	eplate				2121	VDC
		Input to Output	ut		10		2121	VDC
Insulation Resistance	Test Voltage: 500VDC	Input to Base			10			ΜΩ
modulion resistance	Test voltage. 500 v DC	Output to Base			10			10152
Voltage to	SCL/SDA/RST/CNT/ADDF		opiato		0		3.6	V
PARALLEL OPERATION CHARACTERIS	1	100			0		0.0	
Current Share Imbalance	From 50% to 100% Load				-5	· · · · ·	5	%
Output Voltage Adjustment Range					-0.25		0.25	V
Turn-On Output Power							800	W
PHYSICAL SPECIFICATIONS								
Weight						9.7oz (2	75g)	
Dimensions (L x W x H)					4.6 x 2.32	2 x 0.51in (11	6.8 x 59 x	x 2.9mm
SAFETY CHARACTERISTICS								
Safety Approvals	UL60950-1 ⁽⁶⁾ , CSA C	22.2 No. 6095	0-1, EN60950					
CE				EN55022			Class B, I	
RE				EN55022				Class
Harmonics	IEC61000-3-2					(Class A E	quipmer
Voltage Changes, Fluctuations, & Flicker		Level 2. Cent	a at CLU (Aim	0147				riterion I
ESD CS	IEC61000-4-2	Level 3, Cont Level 3, 10V	act: 6kV, Air: 8	3KV				riterion
RS	IEC61000-4-6 IEC61000-4-3	Level 3, 10V	m					riterion
EFT	IEC61000-4-3	Level 3, 10V/	11					riterion
EF I Surge	IEC61000-4-4		MDM. EF///EF	V, 2Ω, 1.2/50µs				riterion
								riterion
Dip	U _T =220VAC	0%U _T , 10ms,	IEC61000-4-11, 0%U _T , 10ms; 0%U _T , 20ms; 70%U _T , 500ms					riterion


NOTES

1.	Output Power (peak): 950W, 7.5ms, duty cycle 0.75
2.	$-5^{\circ}C \leq T_{c} \leq +100^{\circ}C$
	90VAC ≤ Vin ≤ 264VAC
	190VDC ≤ Vin ≤ 400VDC
	Oscilloscope Bandwidth: 20Mhz
3.	$-40 \le T_c \le -5^{\circ}C$ or 264VAC $\le Vin \le 300VAC$
	Oscilloscope bandwidth: 20MHz
	T_{c} < -25°C, twice the recommended output capacitance is needed.
4.	If output undershoot $\Delta V > 1.5V$, output response recovery time Δt ends when $\Delta V \le 1\%V$ out
5.	From an altitude of 1800m, temperature decreases by 1°C for every 220m increase in altitude
6.	This product is Listed to applicable standards and requirements by UL.
*Due to a	advances in technology, specifications subject to change without notice.
CHARA	



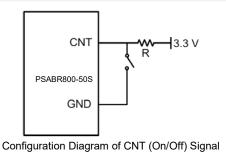
MECHANICAL DRAWINGS



TYPICAL WAVEFORMS

Wall Industries, Inc. • Tel: 603-778-2300 • Toll Free: 888-597-9255 • website: www.wallindustries.com • e-mail: sales@wallindustries.com

OUTPUT ON/OFF CONTROL (CNT) ·


The CNT (On/Off) pin provides the remote control function without turning the input power supply on or off. When the remote control function is not required, leave the CNT open.

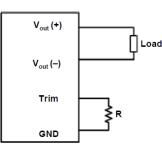
Logic of CNT

CNT (On/Off)	Output
Low Level (-0.3V to +0.8V)	On
High Level (2.4V to 3.6V)	Off

Parameter	Min.	Max.
Turn-Off Pulse Width	100ms	-
Turn-On Delay Time	0.5s	5s

Configuration Diagram of CNT

OUTPUT VOLTAGE ADJUSTMENT (TRIM)


The output voltage of the module can be adjusted by a PMBus command or the Trim pin. The Trim mode takes precedence over the PMBus mode.

For adjustment by a PMBus command, speed is no less than 1V/10ms (load≥1A). For the Trim mode, the output voltage can be adjusted by connecting an external resistor between Trim and GND.

Relationship between R and Vout:

$$R = \frac{168630}{65 \cdot V_{out}} -5110(\Omega)$$

Configuration Diagram for Trim

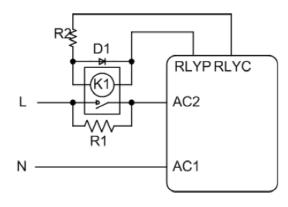
Note:

1. If the Trim pin is not used, it should be left open.

2. When output adjustment is used, ensure that the output

voltage is within the required range. If the output voltage is

outside the adjustment range, the Trim function will fail



INPUT SOFT-START RELAY CONTROL

The module provides RLYP and RLYC to control the external soft-start relay. RLYC is an open collector output pin that connects to RLYP through an external relay coil resistor. V_{RLYP} ranges from 11V to 13V.

RLYC	Relay Contact
Low Level (0V to 3V)	Closed
High Level	Open

Configuration Diagram of Input Soft-Start Relay Control

PARALLEL OPERATION (CB) -

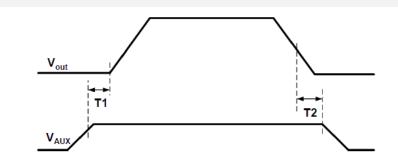
When several modules are used in parallel, an output current can be equally drawn from each module by connecting the CB pins of all modules. A maximum of two modules can be connected.

Note:

1. L3: High-frequency inductor, 0.3µH

2. For the capacitance of the capacitors, see Typical Application Circuit & Test Set-Up Diagram on Page 5

Circuit for Parallel Operation



AUXILIARY POWER SUPPLY (AUX)

The AUX pin supplies auxiliary power to an external circuit with a typical output voltage or 12V. Be careful not to short-circuit the AUX pin and other pins on the module; otherwise, the module will be damaged. Do not connect the AUX pin if power supply to an external circuit is not required.

Rev B

Auxiliary Power Supply

Parameter	Description	Min.	Max.	Unit	Notes
T1	$V_{AUX} \ge 90\%$ regulation to the time when V_{out} begins to rise	2	-	ms	l _{out} ≥ 0.1A
T2	$V_{out} \le 12V$ to the time when V_{AUX} begins to fall	2	-	ms	$I_{out} \ge 0.1A$

PMBUS COMMUNICATION

Monitoring and Fault Detection

The module communicates with the system over the PMBus. It provides the monitoring and fault detection functions.

Output Over Voltage

Output Over Current

• Internal Over Temperature

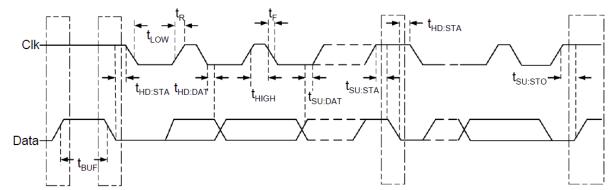
Input Faults

- The module detects and reports the following: The module monitors the following:
 - Module Information
 - Input Voltage
 - Input Power
 - Output Voltage
 - Output Current
 - Output Power
 - Internal Temperature
 - CNT (On/Off)

Accuracy	Min.	Тур.	Max.	Unit	Notes & Conditions
					Vin=110VAC/220VAC
	-5		5		500-800W
Input Power	-8	-	8	%	200-500W
	-10		10		80-200W
	-		-		< 80W
Input Voltage	-5	-	5	VAC	-
Output Voltage	-2	-	2	%	-
	-5		5		8-20A
Output Current	-15	-	15	%	1-8A
	-		-		<1A
					Vin=110VAC/220VAC
	-5		5		500-80W
Output Power	-8	-	8	%	200-500W
-	-10		10		80-200W
	-		-		<80W
Internal Temperature	-5	-	5	°C	-

Module Addressing

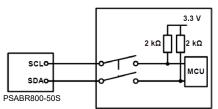
Up to eight modules can be addressed via the ADDR pin. The address of a module can be adjusted by connecting a resistor to the ADDR pin. To set the address, connect ADDR to GND with a resistor R. When the addressing function is not used, leave the ADDR pin open (0x58).



PMBus Communication

Address	Resistance (kΩ)				
Address	Min.	Тур.	Max.		
0x58	-	NC	-		
0x58	198	220	242		
0x5A	108.9	121.0	133.1		
0x5B	67.5	75.0	82.5		
0x5C	45.9	51.0	56.1		
0x5D	29.7	33.0	36.3		
0x5E	18	20	22		
0x5F	9	10	11		

PMBus Timing


Module supports a maximum clock rate of 100kHz

Symbol	Parameter	Min	Max	Units
T _{BUF}	Bus free time between Stop and Start condition	4.7	-	μs
T _{HD:STA}	Hold time after (Repeated) Start condition. After this period, the first clock is generated.	4	-	μs
T _{SU:STA}	Repeated Start condition setup time	4.7	-	μs
T _{SU:STO}	Stop condition setup time	4	-	μs
T _{HD:DAT}	Data hold time	300	-	ns
T _{SU:DAT}	Data setup tim	250	-	ns
T _{LOW}	Clock low period	4.7	-	μs
T _{HIGH}	Clock high period	4	50	μs
T _F	Clock/Data fall time	-	300	ns
T _R	Clock/Data rise time	-	1000	ns

SCL and SDA

The SCL and SDA are pulled up externally to 3.3V through a $2k\Omega$ resistor.

Connect diagram of SCL and SDA

Parameter		Min.	Тур.	Max.
Interval between data	free	10ms	-	-
SCL, SDA		Min.	Ma	х.
Logic Level Low	-0.3V		0.8	V
Logic Level High		2.4V	3.6	V

Alarm Reporting

The ALERT signal is open collector output signal, which is pulled up externally to 3.3V through a $4.7k\Omega$ resistor. When AC fails, input under voltage/over voltage, or output over voltage/over current/over temperature occurs, the ALERT signal will indicate the fault, which will latch off. The signal can be cleared using the PMBus command CLEAR_FAULTS (03h).

Rev B

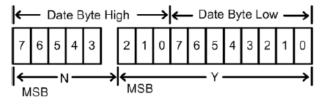
ALERT	Status
Low Level (-0.3V to +0.8V)	Alarm
High Level (2.4V to 3.6V)	No Alarm

AC Failure Alarm and Hold-Up Time

The AFC signal is an open collector output signal, which is pulled up externally to 3.3V through a 4.7kΩ resistor. When AC failure occurs, the AFC signal will indicate the failure.

ACF	Alarm Status
Low level (-0.3V to +0.8V)	No AC Failure
High Level (2.4V to 3.6V)	AC Failure

Parameter	Min.	Max.
Alarm Delay Time	4ms	-
Alarm Hold-Up Time	21.8ms (50V/650W)	-


PMBus Commands

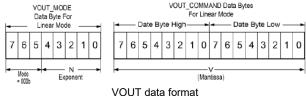
Hex Code	Command Name	Data Type	Data Byte	Data Format
Control Command	· · ·			
01h	OPERATION	Read/Write Byte	1	-
Output Commands	· · ·	· · · · ·		·
20h	VOUT_MODE	Read Byte	1	Linear 16
21h	VOUT_COMMAND	Read/Write Word	2	Linear 16
Alarm Commands				
03h	CLEAR_FAULTS	Sent Byte	0	-
79h	STATUS_WORD	Read Word	2	-
E9h	MFR_STATUS_WORD	Read Word	2	-
Monitoring Commands				
88h	READ_VIN	Read Word	2	Linear 11
8Bh	READ VOUT	Read Word	2	Linear 16
8Ch	READ IOUT	Read Word	2	Linear 11
8Eh	READ_TEMPERATURE_2	Read Word	2	Linear 11
96h	READ_POUT	Read Word	2	Linear 11
97h	READ_PIN	Read Word	2	Linear 11
98h	PMBUS_REVISION	Read Byte	1	-
99h	MFR_ID	Read Block	6	-
9Dh	MFR_DATE	Read/Write Block	10	-
DFh	PMBUS CMD Input Type	Read Word	2	-

Data Format

• Linear 11 data format

The linear data format is a two byte value with an 11-bit binary signed mantissa (two's complement) and a 5-bit binary signed exponent (two's complement). Shown below.

Linear 11 data format


The realationship between N, Y, and actual value X is given by the following equation: X=Y x 2^N Where: Y is the 11-bit, two's complement mantisssa. X is the 5-bit, two's complement exponent.

VOUT data format

Commands related to output voltage are VOUT_COMMANT, VOUT_MODE, and READ_VOUT. The data for these commands is a 16 bit unsigned integer. Shown below.

Rev B

The output voltage is calculated as follows: Voltage= V x 2^N

Where: Voltage is the Output Voltage Value

V is the 16-bit unsigned integer

N is the 5-bit signed integer (two's complement)

Command Descriptions

OPERATION (01h): By default, the module is turned ON as long as Enable is active-low.

The OPERATION command is used to turn the module ON or OFF via the PMBus. It uses the following data bytes.

Function	Data Byte
ON	0x80
RESET	0x00
OFF	0x55
Standby	0x40

To reset the module after it is turned OFF, wait at least 10 seconds, and then turn it ON. All alarms and shutdowns are cleared during a restart. CLEAR FAULTS (03h): Clears the latch fault.

VOUT_MODE (20h): Determines the data type and parameters used by a PMBus command

VOUT_COMMAND (21h): Changes the output voltage of the module.

The default value of 50V. Voltage range 42-57.6V

STATUS WORD (79h): Indicates the module status.

The signal must be cleared by CLEAR_FAULTS.

Bit	Fault Definition
Bit 1	I2C_RST signal
Bit 2	Over Temperature
Bit 3	AC Failure
Bit 4	Overcurrent
Bit 5	Over Voltage
Bit 6	PWR_OFF
Bit 8	EEPROM fault
Bit 9	Input under voltage
Bit 10	Input over voltage
Bit 12	Remote power failure
Bit 13	PFC FAULT

MFR_STATUS_WORD (E9h): Reports the module state and alarm information. The command will not latch off. For the command content see STATUS WORD (79h).

PMBUS CMD Input_Type (DFh): Indicates the type of input power.

0: 90-290VAC Input

1: 240VDC/380VDC Input

2: 48VDC Input.

The module complies with PMBus Protocol Specification rev1.2 requirements.

INPUT OVER VOLTAGE PROTECTION -

The module will shut down after the input voltage exceeds the input over voltage protection threshold. The module will start to work again after the input voltage reaches the input over voltage recovery threshold. For the hysteresis, see protection characteristics in specification table.

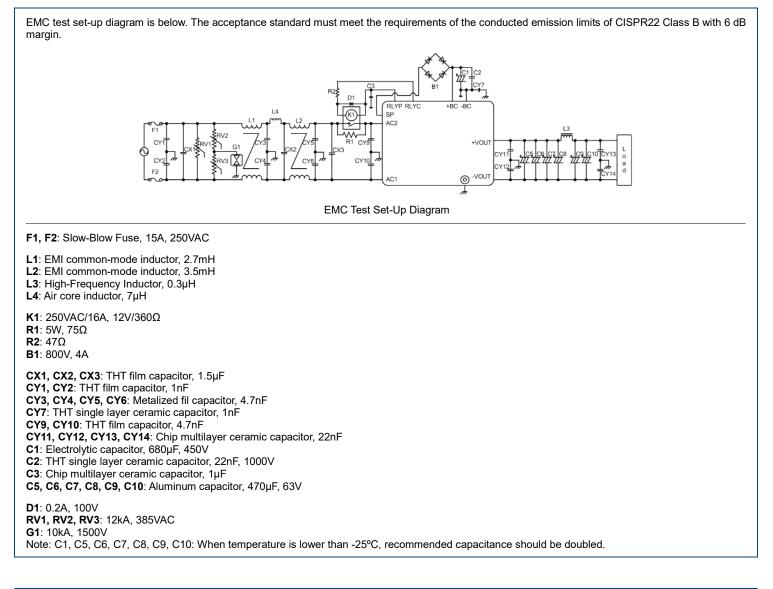
INPUT UNDER VOLTAGE PROTECTION

The module will shut down after the input voltage drops below the under voltage protection threshold. The module will start to work again after the input voltage reaches the input under voltage recovery threshold. For the hysteresis, see protection characteristics in specification table.

OUTPUT OVER VOLTAGE PROTECTION

Output over voltage protection can be set as self-recovery or latch-off. Default mode is self-recovery. For self-recovery mode, the converter will shut down after output voltage exceeds the over voltage protection threshold.

Rev B


OUTPUT OVER CURRENT/SHORT CIRCUIT PROTECTION ·

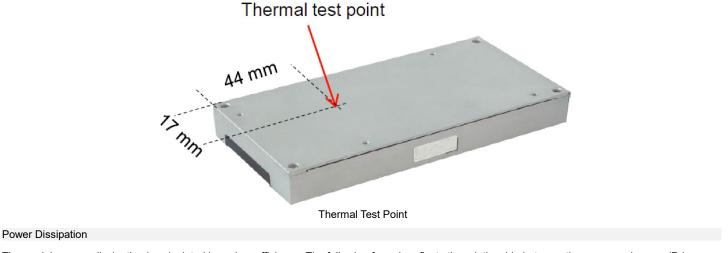
The converter equipped with current limiting circuitry can provide protection from an output overload or short circuit condition. If the output current exceeds the output over current protection threshold, the converter will shut down. When the fault condition is removed, the converter will start to work again.

OVER TEMPERATURE PROTECTION

A temperature sensor on the module senses the average temperature of the module. It protects the module from being damaged at high temperatures. When the temperature exceeds the over temperature protection threshold, the output will shut down. If the temperature drops below the over temperature protection recovery threshold for more than 5 minutes after the module shuts down, the output recovers. Note that the sensor does not sense the temperature within 5 minutes after the output shuts down so even if the temperature drops to a very low level within 4 minutes after the output shuts down, there is still no output.

EMC

QUALIFICATION TESTING


Parameter	Units	Condition
Highly accelerated life test	3	Low temperature limit: -60°C; high temperature limit: 110°C; vibration limit: 40G; temperature change rate: 40°C per minute; vibration frequency range: 10-10000Hz
Thermal Shock	32	500 temperature cycles between -40°C and +85°C with the temperature change rate of 20°C per minute; lasting for 30 minutes both at -40°C and +85°C
Thermal Humidity Bias	32	Maximum input voltage; 85°C; 85% TH; 500 operation hours under lowest load power
High Temperature Operation Bias	32	Rated input voltage; ambient temperature between +45°C and +55°C; 500 operating hours; 50% to 80% load
Power and Temperature Cycling Test	32	Rated input voltage; ambient temperature between -40°C and +85°C; operation hours; 50% load

Rev B

THERMAL CONSIDERATION -

Thermal Test Point

Sufficient airflow should be provided to ensure reliable operation of the module. Therefore, thermal components are mounted on the top surface of the module to dissipate heat to the surrounding environment by conduction, convection, and radiation. Proper airflow can be verified by measuring the temperature of thermal test point shown below.

The module power dissipation is calculated based on efficiency. The following formula reflects the relationship between the consumed power (P_d), efficiency (η), and output power (P_o): $P_d=P_o(1-\eta)/\eta$

MECHANICAL CONSIDERATION

Installation

Although module can be mounted in any direction, free airflow must be available.

Soldering

The module supports standard wave soldering and hand soldering. Reflow soldering is not allowed.

- 1. For wave soldering, the temperature on the module is specified to a maximum of 260°C for 7 seconds at most.
- 2. For hand soldering, the iron temperature should be maintained at 350°C to 420°C, and applied to the module pins for less than 10 seconds.

The module can be rinsed using the isopropyl alcohol (IPA) solvent or other suitable solvents.

COMPANY INFORMATION -

Wall Industries, Inc. has created custom and modified units for over 50 years. Our in-house research and development engineers will provide a solution that exceeds your performance requirements on-time and on budget. Our ISO9001: 2015 certification is just one example of our commitment to producing a high quality, well-documented product for our customers.

Our past projects demonstrate our commitment to you, our customer. Wall Industries, Inc. has a reputation for working closely with its customers to ensure each solution meets or exceeds form, fit and function requirements. We will continue to provide ongoing support for your project above and beyond the design and production phases. Give us a call today to discuss your future projects.

Contact Wall Industries for further information:

Phone:	2 (603)778-2300
Toll Free:	(888)597-9255
Fax:	2 (603)778-9797
E-mail:	sales@wallindustries.com
Web:	www.wallindustries.com
Address:	37 Industrial Drive
	Exeter, NH 03833

©2019 Wall Industries, Inc. Specifications subject to change without notice. Wall Industries is not responsible for typographical errors. The information contained herein is for informational purposes only. This information is provided by Wall Industries and we make no representations or warranties of any kind, express or implied, about the completeness, accuracy, reliability, suitability or availability with respect to the information contained in this document for any purpose. All product and manufacturer names are trademarks or registered trademarks of their respective companies.