

Size: 4.60in x 2.40in x 0.5in (116.8mm x 61mm x 12.7mm)

SPECIFICATIONS

5/23/2017

FEATURES

- Operating Input Voltage Range of 90~290VAC or
 Over Current, Short Circuit, Over Voltage 130~400VDC
- Digital Control, Built-In PFC
- Built-In Soft Start Circuit
- PMBus 1.2 Communication Protocol
- Full Brick Size with Base Plate
- Current Sharing (N≤6)

- and Over Temperature Protection
- Negative Logic
- Remote ON/OFF and SENSE
- Module can be Paralleled
- RoHS6 Compliant
- · CB, CE, UL Approvals

APPLICATIONS

- Servers/Storage Equipment
- Routers/Switches
- Telecommunications Equipment
- Enterprise Networks

DESCRIPTION

The PSB500 series of AC/DC power modules offers up to 500 watts of output power in a 4.60" x 2.40" x 0.5" full brick package. This series consists of single outputs models with an operating input voltage range of 90~290VAC or 130~400VDC. Each model in this series has digital control, built-in PFC, and remote ON/OFF and SENSE. Each model has over current, short circuit, over voltage, and over temperature protection, is RoHS compliant, and has CB, CE, and UL approvals. Please contact factory for order details.

	MODEL SELECTION TABLE								
Model Number	Input Voltage Range	Output Voltage	Output Current	Efficiency	Output Power	Ripple & Noise			
PSB12S-500	00 200\/AC	12VDC	0~42A	91% Max.					
PSB28S-500	90~290VAC (130~400VDC)	28VDC	0~18A	92% Max.	500W	<1%Vo			
PSB48S-500	(130~400 VDC)	48VDC	0~10.5A	92.8% Max.					

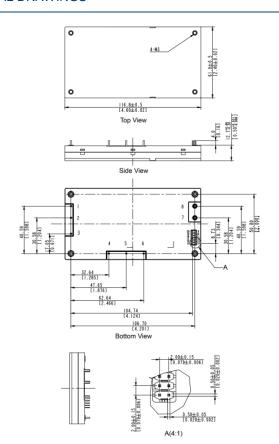
All specification		C, Nominal Input Voltage, and ght to change specifications to			erwise noted	l.		
SPECIFICATION		TEST CONDITIONS	•	Min	Тур	Max	Unit	
INPUT SPECIFICATIONS								
Innert Valtage Dagge	AC			90		290	VAC	
Input Voltage Range	DC			130		400	VDC	
Rated Input Voltage				100	110/220	240	VAC	
Absolute Maximum Input Voltage						315	VAC	
Frequency				47	50/60	63	Hz	
Input Current	Vin=90VAC, 1009	Vin=90VAC, 100% Load				8	Α	
Inrush Current	@110VAC					20	Λ.	
inrusti Current	@220VAC				40	Α		
Power Factor	Vin=110/220VAC	Vin=110/220VAC, 25°C, 100% Load						
THD	Vin=110/220VAC	Vin=110/220VAC, 25°C, Pout=500W				10	%	
	Protection Thresh	74		85				
Input Undervoltage Protection	Recovery Thresh	Recovery Threshold				90	VAC	
	Hysteresis	Hysteresis					1	
	Protection Thresh	295		310				
Input Overvoltage Protection	Recovery Thresh	old	290			VAC		
	Hysteresis			5]	
Input Voltage Precision	25°C, Vin=90~29	0VAC		-10		10	VAC	
PROTECTION								
Short Circuit Protection	Module is not dar	naged even with long-term sl	nort circuits	Self-Recovery				
Over Current Protection	Self-Recovery			105		150	%	
			12VDC Model		15.5		V	
Over Voltage Protection	Latch		28VDC Model		37			
			48VDC Model		59.5			
		12VDC & 48VDC Models	Baseplate	90				
Over Temperature Protection ⁽⁶⁾	Self-Recovery	12 VDC & 48 VDC Wodels	Hysteresis	5			∘c	
Over Temperature Protection ⁹⁷	Sell-Necovery	28VDC Models	Baseplate	95				
		28 V DC IVIOUEIS	Hysteresis	5				
REMOTE ON/OFF CONTROL								
Negative Logic	Low Level	Low Level				0.8	V	
ivegative Logic	High Level			2.4		3.5	V	

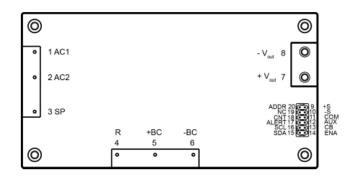
All specifications				Maximum Output Current ased on technological adv		rwise note	a.		
SPECIFICATION	TVO TOOGIVE LITE IN		ST CONDITIONS		Min	Тур	Max	Unit	
OUTPUT SPECIFICATIONS									
Output Voltage						See	Table		
	PSB12S-500				11.88		12.12		
Voltage Initial Setting	PSB28S-500				27.72		28.28	V	
I. B. I.	PSB48S-500				47.52		48.48	0/1/	
Line Regulation	Vin=90-290VAC, I					±0.3 ±0.8		%Vo %Vo	
Load Regulation	Vin=220VAC, 0-M			ow ESB oluminum		±0.6		%V0	
	12VDC Model		APXE160ARA221I	ended product model:	220 x 6		10000		
External Load Capacitance			aluminum capacito model: ELXS451V	or (recommended product SN391MR50S NCC)	390		390 x 2	μF	
	24VDC & 48VDC Models	Modolo	capacitor (recomm EKY-630ELL471M		470 x 3		470 x 11	F.	
	24700 & 40700		aluminum capacito	k capacitor: long life or (recommended product SN391MR50S NCC)	390		390 x 2		
	PSB12S-500				9.6		13.2		
Voltage Adjustment Range (Trim) ⁽¹⁾	PSB28S-500				20		32	V	
	PSB48S-500				36		55		
Regulated Voltage Precision	Full Range of V _{IN} V _{OUT} and T _A				-3		+3	%	
Output Power						See	Table		
No Load Power	110VAC, 25°C						10	w	
=	220VAC, 25°C						12		
Output Current ⁽²⁾		1	A 1: (T > 5	-00			Table		
	12VDC Model		Ambient Temp: ≥-5°C Ambient Temp: -40 ~ -5°C			100	240		
	28VDC Model 48VDC Model						320 640		
			Ambient Temp: -5						
Ripple & Noise (Pk-Pk, 20MHZ BW)		Ambient Temp: -25 ~ -5°C Ambient Temp: -40 ~ -25°C				640	mV		
		Ambient Temp: -40 ~ -25°C Ambient Temp: -5 ~ 85°C				550			
			Ambient Temp: -25			800			
			Ambient Temp: -20				800		
Standby Power	110/220VAC, 25%		Ambient Temp. 40	200			5	W	
Hold-Up Time ⁽³⁾		90μF, Am	bient Temp: 25°C,	100% Load from input	10			mS	
Output Voltage Delay Time	From V _{IN} connecti	on to 10%					8	S	
Output Voltage Rise Time	From 10% V _{OUT} to	90% V _{ou}	T, Ambient Temp: 2	:5°C			100	mS	
Output Voltage Rise Time	From 10% V _{OUT} to	90% V _{ou}	T, Ambient Temp: -	40 ~ -25°C ⁽⁴⁾			400		
Output Voltage Overshoot	Full Range of V _{IN}						5	%Vnom	
Overshoot Amplitude Recovery Time	V _{IN} =110/2230VAC	; Current	Change Rate: 0.1A	/μS			5	%	
· · ·	Load: 25%-50%-2	25%; 50%-	-75%-50%		4.5		250	μS	
Current Sharing Accuracy ⁽⁵⁾	. 0				-10		+10	%	
Remote Sense	+S						5	%Vout	
	-S	n that a -	do to bo compete	1 to C	0		0.5	V	
CB TRIM ⁽⁶⁾	28VDC & 48VDC	ın tnat nee	eds to be connected	1 10 -5	0		3.3 2.5	V	
Absolute Maximum Voltage to	20000 & 40000				U		2.5	V	
SCL/SDA/ADDR/CB Temperature Coefficient	Full Range of V _{IN}	laur and T			-0.02		3.6 0.02	V %/°C	
PROTECTION	i an range or vin	ioui ana i	А		0.02		0.02	707 0	
Short Circuit Protection	Module is not dam	naged eve	n with long-term sh	ort circuits		Self-Re	ecovery		
Over Current Protection	Self-Recovery				105	20 10	150	%	
	12VDC Model					15.5			
Over Voltage Protection	Latch			28VDC Model		37		V	
				48VDC Model		59.5			
Over Temperature Protection ⁽⁷⁾	Self-Recovery	12VDC 8	& 48VDC Models	Baseplate Hysteresis	90 5			°C	
Over Temperature Protection ⁽⁷⁾	28VDC Models			Baseplate	95				

SPECIFICATIONS All specifications are based on 25°C, Nominal Input Voltage, and Maximum Output Current unless otherwise noted. We reserve the right to change specifications based on technological advances **SPECIFICATION TEST CONDITIONS** Min Unit Max Тур **ENVIRONMENTAL SPECIFICATIONS** °С Operating Temperature -40 85 Storage Temperature ٥С -55 125 Altitude(8) 0 5000 m Baseplate Temperature -40 ٥С Conduction Cooled 90 Operating and Storage Humidity Non-Condensing 10 95 %RH Telcordia SR332 Method 1 Case 3, Normal Input/Rated Output, 80% 1,200,000 Hours Load, Baseplate Temp: 25°C **GENERAL SPECIFICATIONS** @110VAC, 42A, 25°C @220VAC, 42A, 25°C @110VAC, 21A, 25°C 87 88 100% Load 89.5 91 12VDC Model 87 88 50% Load @220VAC, 21A, 25°C 89 91 @110VAC, 18A, 25°C 88 89 100% Load @220VAC, 18A, 25°C @110VAC, 9A, 25°C @220VAC, 9A, 25°C 91 92 28VDC Model Efficiency % 88 89 50% Load 90 92 @110VAC, 10.5A, 25°C 87 90.2 100% Load @220VAC, 10.5A, 25°C 90 92.8 48VDC Model @110VAC, 5.25A, 25°C @220VAC, 5.25A, 25°C 87 9 1 50% Load 90 92.1 V AUX 14 Auxiliary power output. Its output current is less than 20mA 10 DM/CM:5kA Impulse Current Input to Output Insulation Voltage 4242 **VDC** Reinforced Insulation | Input to Baseplate Insulation Voltage 3535 Output to Baseplate Insulation Voltage 707 Insulation Characteristics Input to Output Resistance 10 Insulation Resistance Input to Baseplate Resistance 10 МΩ Output to Baseplate Resistance 10 Input Voltage/Power: Input Fault Alarm; Output Voltage; Output OVP/OCP Alarm: PMBus Communication Module Information Base Plate Temperature: Software Switch Module; **OTP Alarm** Absolute Maximum Number of **PCS** Models for Parallel Operation PHYSICAL SPECIFICATIONS Weight 6.70oz (190g) 4.60in x 2.40in x 0.5in Dimensions (L x W x H) (116.8mm x 61mm x 12.7mm) SAFETY CHARACTERISTICS UL60950-1, EN6950-1, IEC 60950-1 All Models TUV, CE, & UL Safety Approvals 28VDC & 48VDC Models C22.2 No. 60950-1

NOTES

DC/CM: 6kV

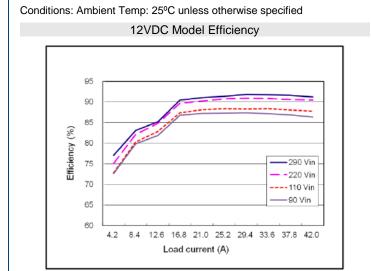

- 1. The output voltage can be adjusted by 12C or the Trim pin. Preferentially use the Trim pin for output voltage adjustment.
- 2. Oscilloscope Bandwidth: 20MHz; Ripple and Noise depends on the environment temperature and external filter circuit. Reference technical manual.
- Output Capacitor of 12VDC Models: 220μF x 6
 Output Capacitor of 28VDC & 48VDC Models: 470μF x 3
- 4. When the temperature is below -25°C, there is no requirement on the output voltage rise waveform.
- 5. The output power of each module must be greater than 200W. The voltage difference between modules connected in parallel should be less than 5%
- 6. Needs to be connected to -S if output voltage adjustment is required.
- 7. The over temperature protection threshold is obtained by measuring the temperature of the middle of the baseplate.
- 3. Certified to 4000m

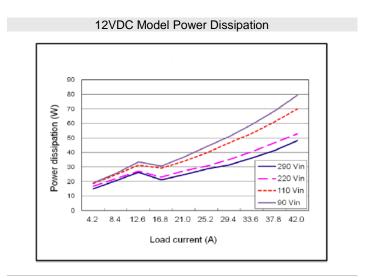

*Due to advances in technology, specifications subject to change without notice.

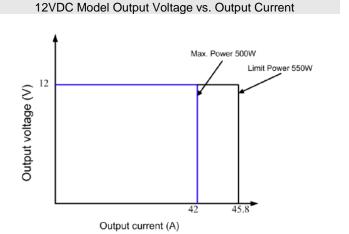
Surge

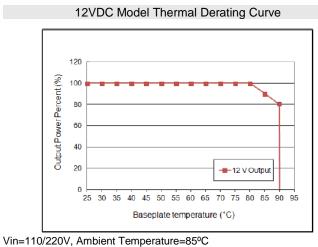
MECHANICAL DRAWINGS

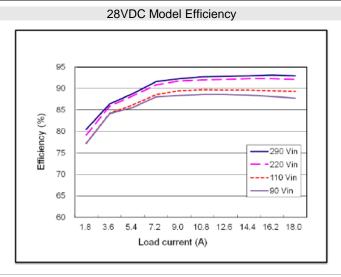
NOTES:

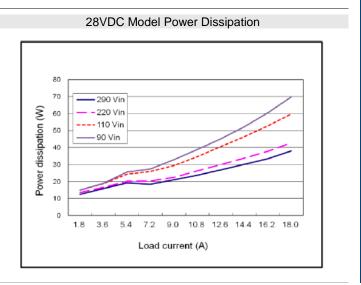

1. All dimensions: in mm [in]. Tolerances: x.x \pm 0.5mm [x.xx \pm 0.02in], x.xx \pm 0.25mm [x.xxx \pm 0.010in] unless otherwise specified.

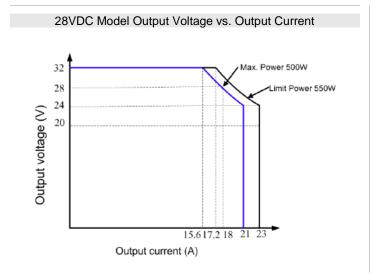

- 2. Pin 1-6: 1.00±0.05mm [0.039±0.001in.] 3. Pin 7-8: 2.00±0.05mm [0.079±0.001in]
- PIN DEFINITION

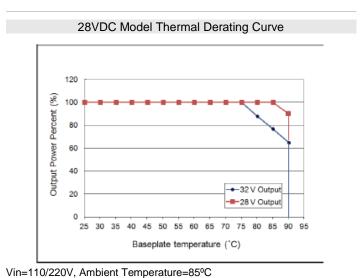

Pin Number	Name		Function			
1	AC1		AC largest			
2	AC2		AC Input			
3	SP		Surge Protection			
4	R		External Resistor for Inrush Current Protection			
5	+BC		Boost Output Voltage (+)			
6	-BC		Boost Output Voltage (-)			
7	+VOUT		+DC Output			
8	-VOUT		-DC Output			
9	+S	+S Remote Sense (+)				
10	-S		-S Remote Sense (-)			
11	COM		Common Ground			
12	AUX		Auxiliary Power Supply (12V0.2A, to the COM)			
13	СВ	CB Current Balance for Parallel Operation				
		Enable signal or AC loss signal (OC), Function reuse:				
14	ENA		1. Output voltage OK indicating pin, when output voltage exceeds a threshold, the pin is in the			
'7	LIVA		state of low resistance			
			2. AC input OK indicating pin, when the AC Vin is powered off, the pin is in a high impedance state			
15	SDA		PMBus Serial Data Line			
16	SCL		PMBus Serial Clock Line			
17	ALERT		PMBus Alert			
18	CNT		ON/OFF Control (Output Side) (Negative Logic)			
10	12VDC	NC	-			
19 28VDC & 48VDC TRIM		TRIM	Adjustment of Output Voltage			
20	ADDR		Module Address (An External Resistor to the COM)			

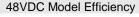


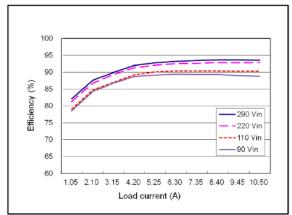

CHARACTERISTIC CURVES

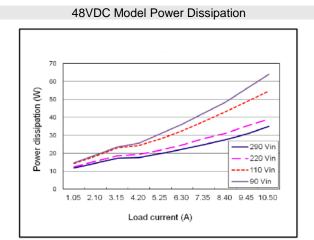


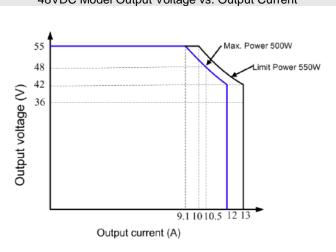


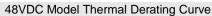


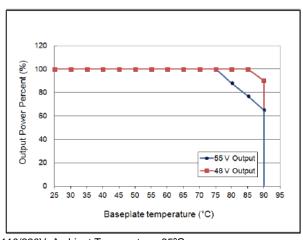

5/23/2017



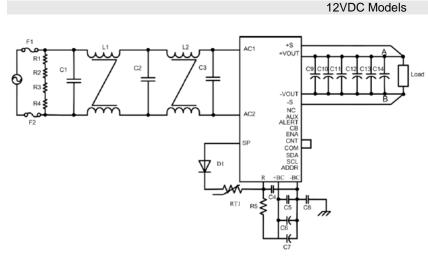








48VDC Model Output Voltage vs. Output Current



Vin=110/220V, Ambient Temperature=85°C

TYPICAL WAVEFORMS

Test Setup Diagram

F1, F2: 15A, 250VAC

C1, C3: The 1µF/275VAC film capacitor is recommended

C2: The 0.68µF/275VAC film capacitor is recommended

C4, C5: The 1.5µF/450V film capacitor is recommended

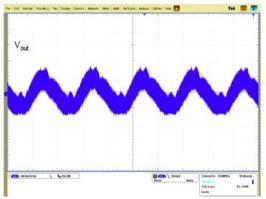
C6, C7: The 390µF/450V long life aluminum electrolytic capacitor is recommended.

C8: The 2200pF capacitor is recommended

C9, C10, C11, C12, C13, C14: The 220µF/16V low ESR aluminum electrolytic capacitor is recommended

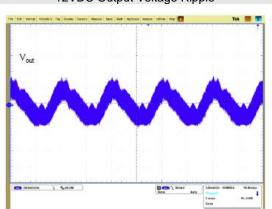
L1, L2: 6mH

R1, R2, R3, R4: 100kΩ/0.25 W resistor


R5: Cement resistor $75\Omega/5W$

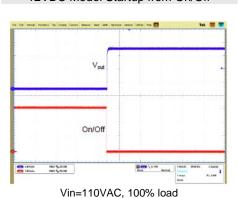
RT1: Negative temperature coefficient (NTC) resistor 1Ω

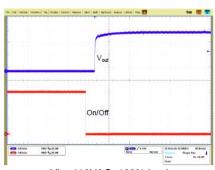
D1: 1kV/3A


NOTE: Points A and B, which are used for testing the output voltage ripple, must be 25mm (0.98in) away from the Vout (+) pin and the Vout (-) pin, respectively.

12VDC Model Output Voltage Ripple

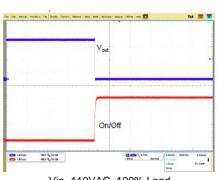
For points A and B in the test set-up diagram. Vin=110VAC, Vout=12V, lout=42A


12VDC Output Voltage Ripple

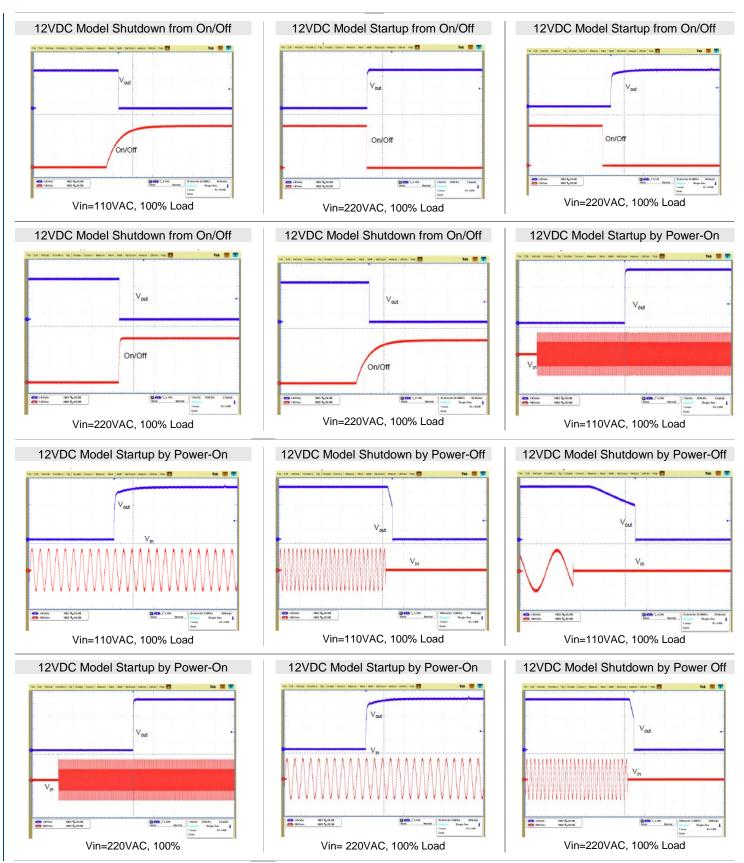

For points A and B in the test set-up diagram Vin=220VAC, Vout=12V, lout=42A

Conditions: Ambient Temp.=25°C unless otherwise specified

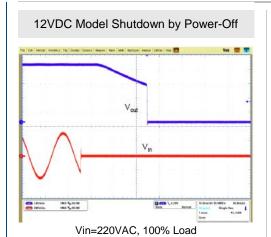
12VDC Model Startup from On/Off

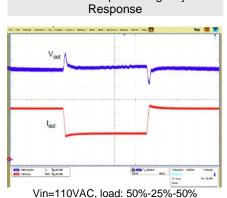


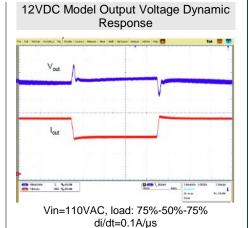
12VDC Model Startup from On/Off

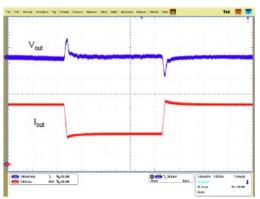

Vin=110VAC, 100% load

12VDC Model Shutdown from On/Off



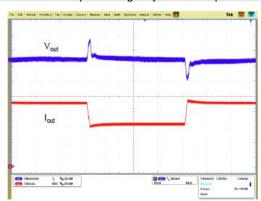

Vin=110VAC, 100% Load



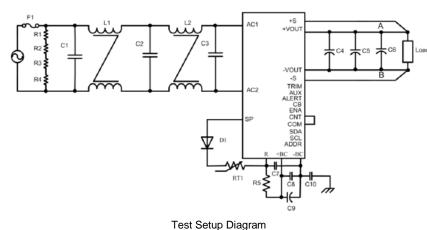


di/dt=0.1A/µs

12VDC Model Output Voltage Dynamic

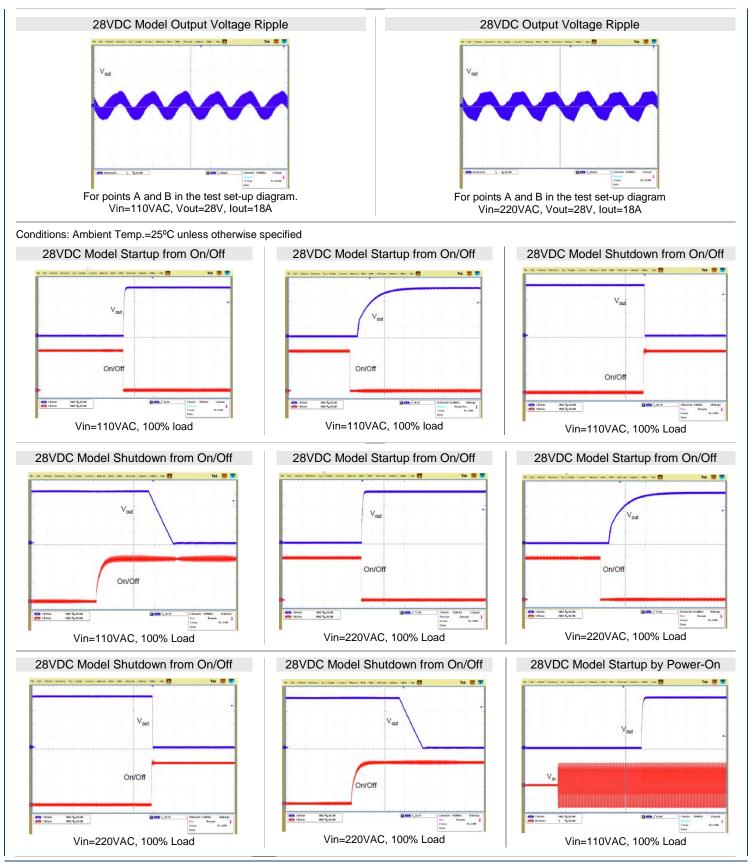


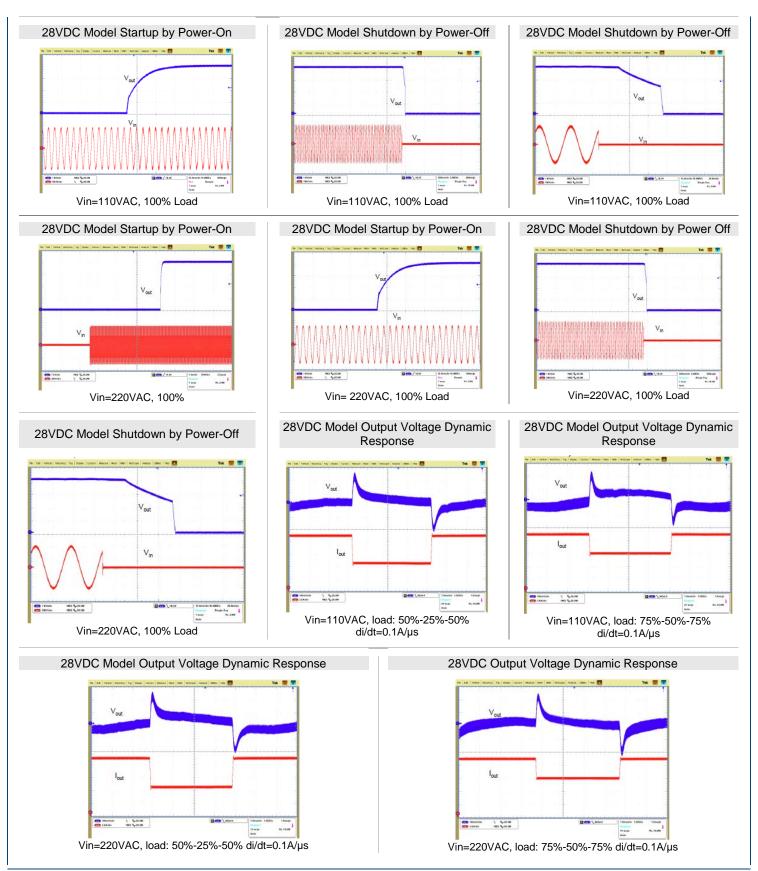
12VDC Model Output Voltage Dynamic Response


Vin=220VAC, load: 50%-25%-50% di/dt=0.1A/µs

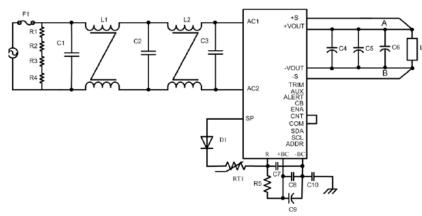
12VDC Output Voltage Dynamic Response

Vin=220VAC, load: 75%-50%-75% di/dt=0.1A/µs


28VDC Model


- F1: 15A, 250VAC
- C1, C3: The 1 μ F/275VAC film capacitor is recommended
- C2: The 0.68µF/275VAC film capacitor is recommended
- C4, C5, C6: The 470µF/63V low ESR aluminum electrolytic capacitor is recommended
- C7, C8: The 1.5µF/56V film capacitor is recommended.
- C8: The 2200pF capacitor is recommended
- C9: The $390\mu\text{F}/450\text{V}$ long life (5000h) aluminum electrolytic capacitor is recommended
- C10: The 2200pF capacitor is recommended
- L1, L2: 3.5 mH
- R1. R2. R3. R4: 100kΩ/0.25 W resistor
- R5: Cement resistor $75\Omega/5W$
- RT1: Negative temperature coefficient (NTC) resistor 1Ω
- D1: 1kV/3A

NOTE: Points A and B, which are used for testing the output voltage ripple, must be 25mm (0.98in) away from the Vout (+) pin and the Vout (-) pin, respectively.



48VDC Model

Test Setup Diagram

F1: 15A, 250VAC

C1, C2, C3: The 1µF/275VAC film capacitor is recommended

C4, C5, C6: The 470µF/63V low ESR aluminum electrolytic capacitor is recommended

C7, C8: The 1.5µF/450V film capacitor is recommended.

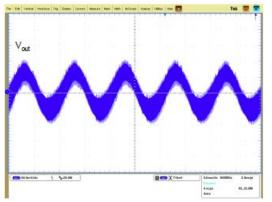
C8: The 2200pF capacitor is recommended C9: The 390µF/450V long life (5000h) aluminum electrolytic capacitor is recommended

C10: The 2200pF capacitor is recommended

L1: Common-mode inductor (single phase, 3.5mH)

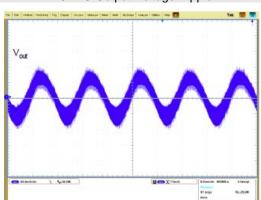
L2: Common-mode inductor (single phase, 5-12mH)

R1, R2, R3, R4: 100kΩ/0.25 W resistor

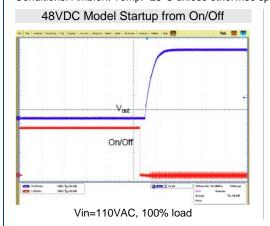

R5: Cement resistor 75Ω/5W

RT1: Negative temperature coefficient (NTC) resistor 1Ω

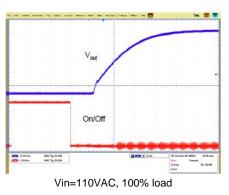
D1: 1kV/3A

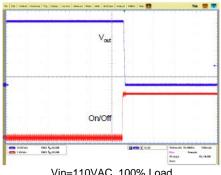

NOTE: Points A and B, which are used for testing the output voltage ripple, must be 25mm (0.98in) away from the Vout (+) pin and the Vout (-) pin, respectively.

48VDC Model Output Voltage Ripple


For points A and B in the test set-up diagram. Vin=110VAC, Vout=48V, Iout=10.5A

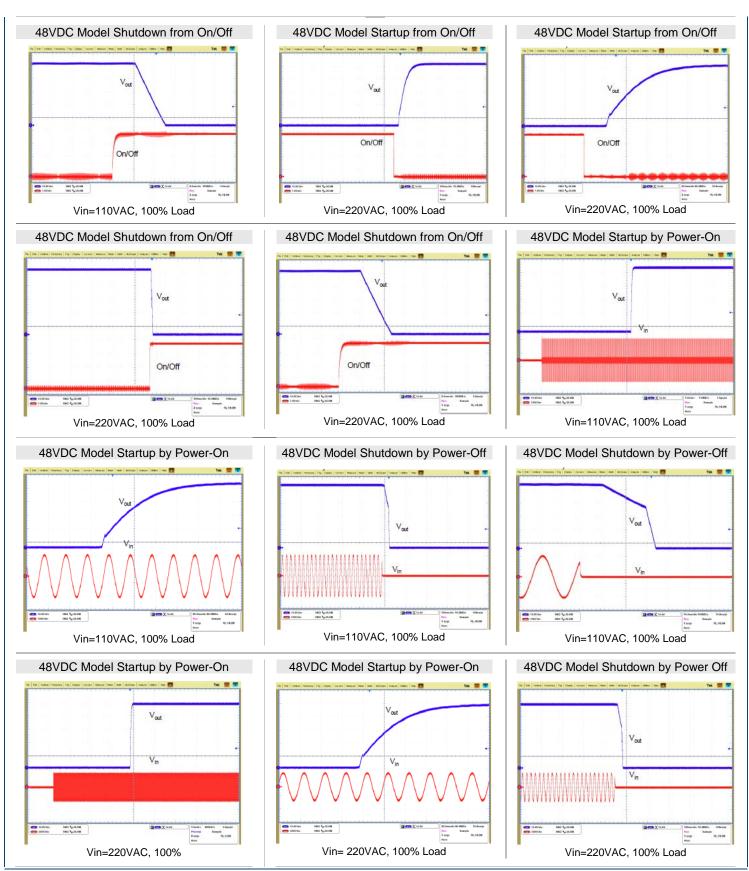
48VDC Output Voltage Ripple

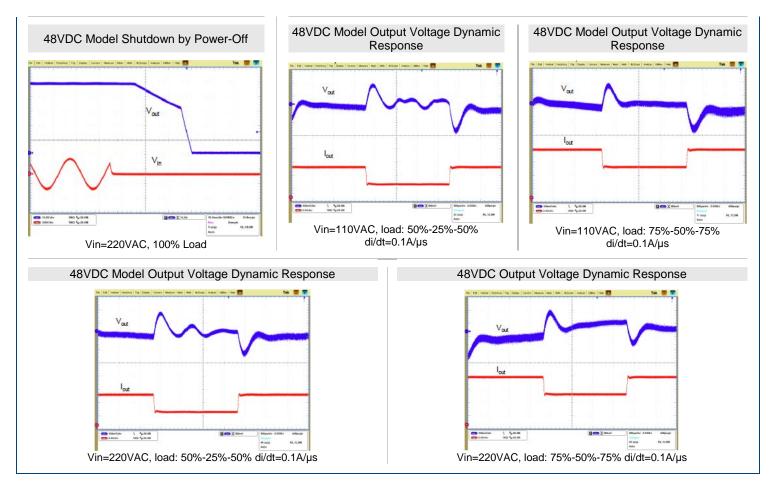



For points A and B in the test set-up diagram Vin=220VAC, Vout=48V, Iout=10.5A

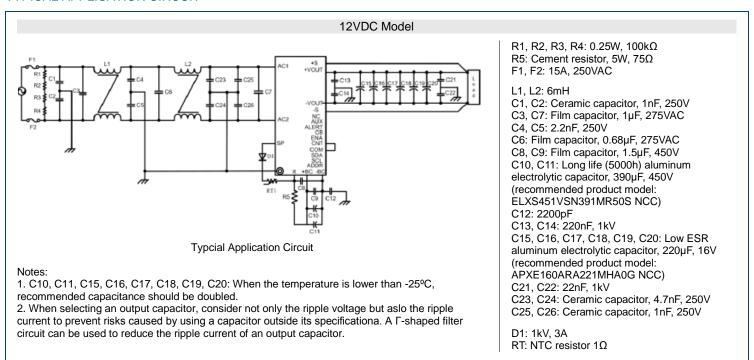
Conditions: Ambient Temp.=25°C unless otherwise specified

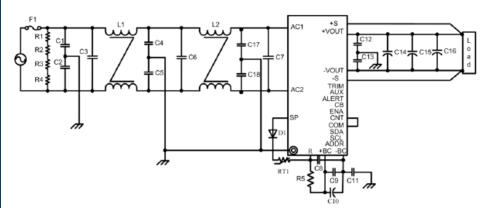
48VDC Model Startup from On/Off




48VDC Model Shutdown from On/Off

Vin=110VAC, 100% Load





TYPICAL APPLICATION CIRCUIT -

28VDC Model

Typcial Application Circuit

Notes:

- 1. C10, C14, C15, C16: When the temperature is lower than -25°C, recommended capacitance should be doubled.
- 2. When selecting an output capacitor, consider not only the ripple voltage but aslo the ripple current to prevent risks caused by using a capacitor outside its specificationa. A Γ-shaped filter circuit can be used to reduce the ripple current of an output capacitor.

R1, R2, R3, R4: 0.25W, 100kΩ

F1: 15A, 250VAC

L1, L2: 3.5mH

C1, C2: Ceramic capacitor, 1nF, 250V

C3, C7: Film capacitor, 1µF, 275VAC

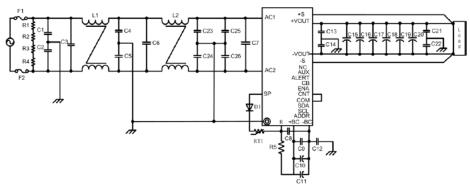
C4, C5: 10nF, 250VAC

C6: Film capacitor, 0.68µF, 275VAC

C8, C9: Film capacitor, 1.5µF, 450V

C10: Long life (5000h) aluminum electrolytic capacitor, 390µF, 450V (recommended product model: ELXS451VSN391MR50S NCC)

C11: 2200pG


C12, C13: 100nF, 1kV C14, C15, C16: Low ESR aluminum electrolytic capacitor, 470µF, 63V (recommended product model: EKY-630ELL471MK25S NCC) C17, C18: 1nF, 250V

D1: 1kV, 3A

R5: Cement resistor. 5W. 75Ω

RT1: NTC resistor 1Ω

48VDC Model

Typcial Application Circuit

Notes:

- 1. C10, C11, C15, C16, C17, C18, C19, C20: When the temperature is lower than -25°C, the recommended capacitance should be doubled.
- 2. When selecting an output capacitor, consider not only the ripple voltage but also the ripple current to prevent risks caused by using a capacitor outside its specifications. A Γ-shaped filter circuit can be used to reduce the ripple current on an output capacitor.

R1, R2, R3, R4: 0.25W, 1kΩ R5: Cement Resistor, 5W, 75 Ω F1, F2: 15A, 250VAC

L1, L2: 6mH

C1, C2: Ceramic capacitor, 1nF, 250V

C3, C7: Film capacitor, 1µF, 275VAC

C4, C5: 2.2nF, 250V

C6: Film capacitor, 0.68µF, 275VAC

C8, C9: Film capacitor, 1.5µF, 450V

C10, C11: Long life (5000h) aluminum electrolytic capacitor, 390µF, 16V

(recommended product model: APXE160ARA221MHA0G NCC)

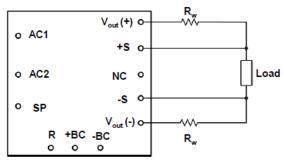
C21, C22: 22nF, 1kV

C23, C24: Ceramic capacitor, 4.7nF, 250V

C25, C26: Ceramic capacitor, 1nF, 250V

D1: 1kV, 3A

RT1: NTC resistor 1Ω


REMOTE SENSE

This function is used to compensate for voltage drops on R_W , which indicates the line impedance between the output and the load. +S, -S, V_{OUT} (+), and V_{OUT} (-) should meet the following requirements:

$$[V_{OUT} (+) - (+S)] \le 5\% V_{OUT}$$

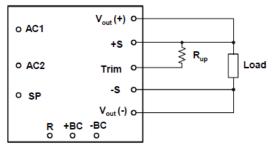
 $[(-S) - V_{OUT} (-)] \le 0.5V$

V_{OUT} is the rated output voltage:

12VDC Model: $11.4\dot{V} \le [V_{\text{OUT}}(+) - V_{\text{OUT}}(-)] \le 12.6V$ 28VDC Model: $20V \le [V_{\text{OUT}}(+) - V_{\text{OUT}}(-)] \le 32V$ 48VDC Model: $36V \le [V_{\text{OUT}}(+) - V_{\text{OUT}}(-)] \le 55V$

Configuration Diagram for Remote Sense

If the remote sense function is not required, +S should be connected to V_{OUT} (+) and -S should be connected to V_{OUT} (-).


OUTPUT VOLTAGE TRIM -

28VDC & 48VDC Models

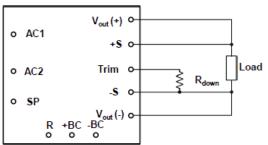
Output voltage can be adjusted within the trim range by using the Trim pin.

Trim Up

The output voltage can be increased by connecting an external resistor between the Trim pin and the +S pin.

Configuration Diagram for Trim Up

28VDC Model: Relationship between Rup and Vout:


$$R_{up} = \ \ \, \frac{26550 \ x \ V_{OUT}}{V_{OUT} - 28} \ \ \, \text{-3300}(\Omega)$$

48VDC Model: Relationship between R_{up} and V_{OUT}:

$$R_{up} = \frac{46300 \times V_{OUT}}{V_{OUT} - 48} -3300(\Omega)$$

Trim Down

The output voltage can be decreased by connecting an external resistor between the Trim pin and the -S pin.

Configuration Diagram for Trim Down

28VDC Model: Relationship between R_{down} and V_{OUT}:

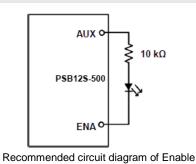
$$R_{down} = \frac{2000 \text{ x V}_{OUT}}{28 - V_{OUT}} -3300(\Omega)$$

48VDC Model: Relationship between R_{down} and V_{OUT}:

$$R_{down} = \frac{2000 \times V_{OUT}}{48 - V_{OUT}} -3300(\Omega)$$

Note:

- 1. If the Trim pin is not used, it should be left open.
- 2. When output voltage adjustment is used, ensure that the output voltage is within the required range; otherwise the protection function will be activated.
- 3. Ensure that the actual output power does not exceed the maximum output power when raising the voltage.

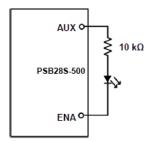

ENABLE (ENA) -

12VDC Model

The Enable signal indicates that the output voltage of the module is normal and can supply power to the load (maximum sink current is 10mA and maximum applied voltage is 75V). When the output voltage exceeds 8V at startup, ENA is in low resistance state. When the output voltage drops below 6V or input power fails, ENA is in high resistance state. The logic of Enable is as follows:

Logic Enable	ENA	Output Voltage
Negative Logic	High Resistance	≤6V or input fault, input power failure
	Low Resistance	>8V

The Enable signal is pulled up to the AUX by a $10k\Omega$ external resistor, indicted by an LED.

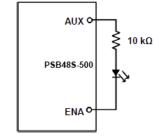


28VDC Model

The Enable signal indicates that the output voltage of the module is normal and can supply power to the load (maximum sink current is 10mA and maximum applied voltage is 75V). When the output voltage exceeds 15V at startup, ENA is in low resistance state. When the output voltage drops bellows 13V or input power fails, ENA is in high resistance state. The logic of Enable is as follows:

Logic Enable	ENA	Output Voltage
Negative Logic	High Resistance	≤13V or input fault, input power failure
	Low Resistance	>15V

The Enable signal is pulled up to the AUX by a $10k\Omega$ external resistor, indicated by an LED.

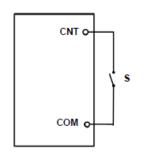

Recommended circuit diagram of Enable

48VDC Model

The Enable signal indicates that the output voltage of the module is normal and can supply power to the load (maximum sink current is 10mA and maximum applied voltage is 75V). When the output voltage exceeds 30V at startup. ENA is in low resistance state. When the output voltage drops below 28V or input power fails, ENA is in high resistance state. The logic of Enable is as follows:

Logic Enable	ENA	Output Voltage
Negative Logic	High Resistance	≤28V or input fault, input power failure
	Low Resistance	>30V

The Enable signal is pulled up to the AUX by a $10k\Omega$ external resistor, indicated by an LED.



Recommended circuit diagram of Enable

CNT (ON/OFF) -

The CNT (On/Off) pin provides the remote control function without turning the input power supply on or off. When the remote control function is not required, short-circuit CNT and COM. The logic of On/Off is as follows:

Logic Enable	On/Off	Output
Negative Logic	Low Level	On
	High Level or Left Open	Off

Configuration diagram of CNT (On/Off) signal

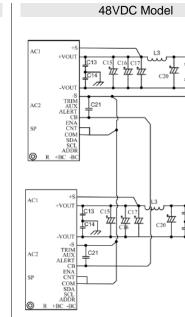
AUXILIARY POWER SUPPLY (AUX) -

The AUX pin supplies auxiliary power to an external circuit with a typical output voltage of 12V. Be careful not to short-circuit the pin and other pins on the module; otherwise the module will be damaged. Do not connect the AUX pin if power supply to an external circuit is not required.

PARALLEL OPERATION (CB) -

When several modules are used in parallel, an output current can be equally drawn from each module by connecting the CB pins of all modules. A maximum of two modules can be connected in parallel is equal to or less than 90% of the power of two fully loaded modules.

28VDC Mode


Notes:4

- 1. L3: High frequency inductor 0.3µH
- 2. C21: Aluminum electrolytic capacitor 16V, 220µF
- 3. C24: 1µF, 16V
- 4. For other capacitor parameters, see EMC

ACI +S +VOUT C13 C15 C16 C17 -VOUT C14 77 77 77 C22 AC2 TRIM C23 ALERG SP CNT CNM SDA ADDR SDA ADDR

Notes:

- 1. L3: High frequency inductor 0.3µH
- 2. C22: Aluminum electrolytic capacitor 63V, 470µF
- 3. C23: 1µF, 16V
- 4. For other capacitor parameters, see EMC

Notes:

- 1. L3: High frequency inductor 0.3µH
- 2. C20: Aluminum electrolytic capacitor 63V, 470µF
- 3. C21: 1µF, 16V
 - 4. For other capacitor parameters, see EMC

PMBUS COMMUNICATION

The module communicates with the system over the PMBus. The following table describes the PMBus address:

R (ADDR Pull Down Resistor)	Address
Left Open	Invalid
200kΩ	0x5F
174kΩ	0x5E
150kΩ	0x5D
124kΩ	0x5C
100kΩ	0x5B
75kΩ	0x5A
49.9kΩ	0x59
24.9kΩ	0x58
Ground	Invalid

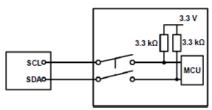
The address bit is as follows:

I	Bit	7	6	5	4	3	2	1	0
			Read/Write						

Monitoring and Fault Detection

The module communicates with the system over the PMBus. It provides the monitoring and the fault detection functions.

The module monitors the following:

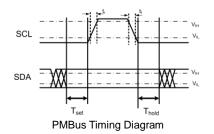

- Module Information
- Input Voltage
- Input Power
- Output Voltage
- Output Power
- Baseplate Temperature
- CNT (On/Off)

The module detects and reports the following:

- Input faults
- Output overvoltage
- Output overcurrent
- Baseplate overtemperature

SCL and SDA

Within the PSU, the SCL and SDA are each connected to a pull-up resistor. Externally, the SCL and SDA are connected to the system through the fault isolation circuit.


Interconnect diagram of SCL and SDA

PMBus Timing

The module supports both 100kHz (default) and 400kHz clock rates. T_{SET} is the duration for which SDA keeps its value unchanged before SCL increases. T_{hold} is the duration for which SDA keeps its value unchanged after SCL decreases.

Communication will fail if parameter values are consistent with those provided in the following table.

Parameter	Min.	Тур.	Max.	Unit
Logic Input Low (V _{IL})	-	-	1.1	V
Logic Input High (V _{IH})	2.1	-	-	V
Logic Output Low (V _{OL})	-	-	0.25	V
Logic Output High (V _{OH})	2.7	-	-	V
PMBus Setup Time	100	-	-	ns
PMBus Hold-Up Time	0	-	-	ns
Clock/Data Fall Time(t _f)	20+	-	300	ns
Clock Data Rise Time (t _r)	0.1Cb	-	300	ns
Total Capacitance of One Bus Line (Cb)	-	-	400	pF

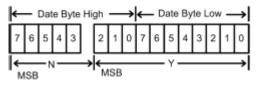
Wall Industries, Inc. • 37 Industrial Drive, Exeter, NH 03833 • Tel: 603-778-2300 • Toll Free: 888-597-9255 •

PMBus Commands

12VDC Model

Hex Code	Command Name	Data Type	Data Byte	Data Format
Control Cor	nmands			
01h	OPERATION	Read/Write Byte	1	-
03h	CLEAR_FAULTS	Send Byte	0	-
11h	STORE_DEFAULT_ALL	Send Byte	0	-
Output Con	nmands	•		
20h	VOUT_MODE	Read Byte	1	-
31h	POUT_MAX	Read/Write Word	2	Linear 11
Alarm Com	mand			
51h	OT_WARN_LIMIT	Read/Write Word	2	Linear 11
Status Com	mand			
79h	STATUS_WORD	Read Word	2	-
Monitoring (Commands			
88h	READ_VIN	Read Word	2	Linear 11
8Bh	READ_VOUT	Read Word	2	Linear 16
8Ch	READ_IOUT	Read Word	2	Linear 11
8Dh	READ_TEMPERATURE_1	Read Word	2	Linear 11
Monitoring (Commands			
96h	READ_POUT	Read Word	2	Linear 11
97h	READ_PIN	Read Word	2	Linear 11
98h	PMBUS_REVISION	Read Byte	1	-
E9h	MFR_STATUS_WORD	Read Word	2	-
ECh	MFR_WRITE_SYSTIME	Write Block	4	Time: S Low byte in the former, the high byte in the
EFh	MFR_READ_LAST_ACDROP_TIME	Read Block	8	post
F6	WRITE_STANDBY	Write Byte	1	0x00: Standby; 0x20: Reset

28VDC & 48VDC Models


Hex Code	Command Name	Data Type	Data Byte	Data Format
Control Con	nmands		L L	
01h	OPERATION	Read/Write Byte	1	-
03h	CLEAR_FAULTS	Send Byte	0	-
11h	STORE_DEFAULT_ALL	Send Byte	0	-
Output Corr	nmands	•		
20h	VOUT_MODE	Read Byte	1	=
21h	VOUT_COMMAND	Read/Write Word	2	Linear 16
Alarm Comi	mand			
51h	OT_WARN_LIMIT	Read/Write Word	2	Linear 11
Status Com	mand			
79h	STATUS_WORD	Read Word	2	-
Monitoring (Commands			
88h	READ_VIN	Read Word	2	Linear 11
8Bh	READ_VOUT	Read Word	2	Linear 16
8Ch	READ_IOUT	Read Word	2	Linear 11
8Dh	READ_TEMPERATURE_1	Read Word	2	Linear 11
96h	READ_POUT	Read Word	2	Linear 11
Monitoring (Commands			
97h	READ_PIN	Read Word	2	Linear 11
98h	PMBUS_REVISION	Read Byte	1	-
E9h	MFR_STATUS_WORD	Read Word	2	-
ECh	MFR_WRITE_SYSTIME	Write Block	4	Time: S Low byte in the former, the high byte in the
EFh	MFR_READ_LAST_ACDROP_TIME	Read Block	8	post
F6	WRITE_STANDBY	Write Byte	1	0x00: Standby; 0x20: Reset

Data Format

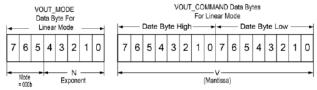
Linear 11 data format

The linear data format is a two day byte value with an 11-bit binary signed mantissa (two's complement) and a 5-bit binary signed exponent (two's complement) as shown in figure below:

Linear 11 Data Format

The relationship between N, Y, and actual value V is given by the following equation: $X=Y\times 2^N$

12VDC Model: Y is the 11-bit, binary signed mantissa (two's complement)


28VDC & 48VDC Models: Y is the 11-bit two's complement mantissa

12VDC Model: N is the 5-bit, binary signed exponent (two's complement)

28VDC & 48VDC Models: N is the 5-bit, two's complement exponent

VOUT data format

Commands related to the output voltage are VOUT_MODE and READ_VOUT for the 12VDC model and VOUT_COMMAND, VOUT_MODE, and READ_VOUT for 28VDC and 48VDC models. The data for these commands is a 16 bit unsigned integer, as shown in figure below.

Vout Data Format

Output Voltage is calculated as follows: V x 2^N

Where:

Voltage is the output voltage value.

V is the 16-bit unsigned integer

N is the 5-bit signed integer (two's complement)

Command Descriptions

OPERATION (01h): By default, the module is turned ON as long as Enable active-low.

The OPERATION command is used to turn the module ON or OFF via the PMBus. It uses the following data bytes.

Function	Data Byte
ON	0x80
RESET	0x00
OFF	0x55

To reset the module after it is turned OFF, wait at least 10 seconds, and then turn it ON. All alarms and shutdowns are cleared during a restart.

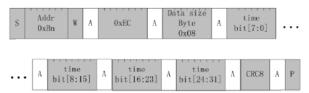
CLEAR FAULTS (03h): Clears the latch fault.

STORE_DEFAULT_ALL (11h): Saves calibrated or modified data. If this command is not sent, calibrated or modified data cannot be saved in the event of a power failure.

VOUT_MOTE (20h): Determines the data type and parameters used by a PMBus command.

12VDC Model: POUT_MAX (31h): Configures the power limiting point (value range: 300W to 550W). The function allows users to change the constant current protection threshold. The constant current can be calculated based on the configured power limiting point and output voltage. 28VDC & 48VDC Models: VOUT_COMMAND (21h): This command is used to change the output voltage of the power supply. The default value for 28VDC models is 28VDC (voltage range 20-32VDC). The default value for 48VDC models is 48VDC (voltage range: 36-55VDC).

STATUS_WORD (79h): Reports module fault information. The module latches off after a fault occurs.


	(
Bit	Fault Name	Definition	
b15-b6	-	=	
b5	VOUT_OV	1-Over Voltage, 0-Normal	
b4	IOUT_OC	1- Over Current, 0-Normal	
b3	-	-	
b2	OVER_TEMPERATURE	1-Over Temperature, 0-Normal	
b0. b1	-	-	

MFR_STATUS_WORD (E9h): Reports the module stat.

	Bit	Fault Name	Fault Definition
ſ	b15-b1	-	-
ſ	b0	REMOTE ON/OFF	1-OFF, 0-ON

MFR_WRITE_SYSTIME (ECh): As the module does not have a time chip, the system uses the ECh command to deliver the system time to the module. The module then runs based on the delivered system time in unit of seconds. To ensure time accuracy, it is recommended that the system synchronize time to the module every 10 minutes. The MFR_WRITE_SYSTIME command format is shown below.

MFR_WRITE_SYSTIME command format

Note: S: Start Condition, R: Rated bit value of 1, W: Write bit value of 0, A: Acknowledge bit, may be ACK or NACK, P: Stop Condition

MFR_READ_LAST_ACDROP_TIME (EFh): Reads the last disconnection time recorded by the module. The EFh data format is shown in the figure. The time occupies four bytes and the high-order byte takes precedence over the low-order byte during transmission.

MFR READ LAST ACDROP TIME command format

The module used 8-bit cyclic redundancy check (CRC). The fenerator plynominal is C(x) = x8 + x2 + x1 + 1, or 0b100000111 if expressed in binary form. The module complies with the PMBus Protocol Specification rev1.2 requirements.

PROTECTION CHARACTERISTICS

Input Over Voltage Protection

The module will shut down after the input voltage exceeds the input over voltage protection threshold. The module will start to work again after the input voltage reaches the input over voltage recovery threshold. For hysteresis, see protection characteristics.

Input Under Voltage Protection

The module will shut down after the input voltage drops below the under voltage protection threshold. The module will start to work again after the input voltage reaches the input under voltage recovery threshold. For the hysteresis, see protection characteristics.

Output Over Voltage Protection

When the output voltage exceeds the output over voltage protection threshold, the module will enter hiccup mode. If the module experiences five or more times of over voltage due to an internal fault within 20s, the module latches off. You need to restart the module to unlock it. You must power on the module at least 20s after powering it off. The module dynamic over voltage does not exceed 17V for 12VDC model, 39V for 28VDC models, and 69V for 48VDC model.

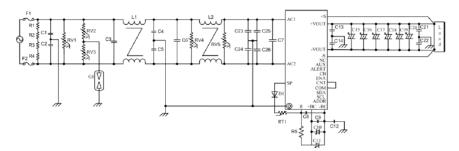
Output Over Current Protection

When the output current exceeds the output overcurrent protection threshold, the module will enter hiccup mode. When the fault condition is removed, the module will automatically restart.

Over Temperature Protection

A temperature sensor on the module sense the average temperature of the module. It protects the module from being damaged at high temperatures. When the temperature exceeds the over temperature protection threshold, the output will shut down. If the temperature drops below the over temperature protection recovery threshold more than 5 minutes after the module shuts down, the output recovers. Note that the sensor does not sense the temperature within 5 minutes after the output shuts down. Therefore, even if the temperature drops to a very low level within 5 minutes after the output shuts down, there is still no output.

Cooling Characteristics


When the module is running, the temperature of the baseplate must not exceed 90°C. The module supports natural cooling and fan cooling. Users can select heat sink models depending on the onsite conditions.

EMC

12VDC Model

The figure below shows the EMC test set-up diagram. The acceptance standard must meet the requirements of the conducted emission limits of CISRP22 Class B with 6 dB margin. The level of surge is CM/DM 6kV/6kV 2Ω (1.2/50), and the level of impulse current is CM/DM 5kA/5kA (8/20).

EMC Test set-up diagram

Note: C10, C11, C15, C16, C17, C18m C19, C20: When the temperature is lower than -25°C, the recommended capacitance should be doubled.

R1, R2, R3, R4: 0.25W, $100k\Omega$ R5: Cement resistor, 5W, 75Ω RV1: 620V, 385V, 12kA RV2, RV3: 750V, 460V, 12kA RV4: 620V, 385V, 12kA RV5: 620V, 385V, 4.5A

L1. L2: 6mH

C1, C2: Ceramic capacitor, 1nF, 250V C3, C7: Film capacitor, 1µF, 275VAC

C4, C5: 2.2µF, 250V

C6: Film capacitor, 0.68µF, 275VAC

C8, C9: Film capacitor, 1.5µF, 450V

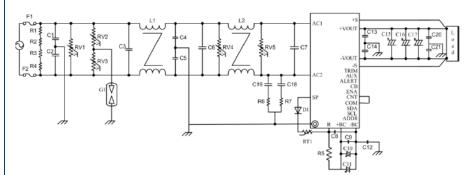
C10, C11: Long life (5000h) aluminum electrolytic capacitor, 390µF, 450V (recommended product model: ELXS451VSN391MR50S NCC)

C12: 2200pF

C13, C14: 220nF, 1kV

C15, C16, C17, C18, C19, C20: Low ESR aluminum electrolytic capacitor, 220µF, 16V (recommended product model: APXE160ARA221MHA0G NCC)

C21, C22: 22nF, 1kV


C23, C24: Ceramic capacitor, 4.7nF, 250V C25, C26: Ceramic capacitor, 1nF, 250V

D1: 1kV. 3A

RT1: NTC Resistor 1Ω G1: 10kA, 1.5kV F1, F2: 15A, 250VAC

28VDC Model

The figure below shows the EMC test set-up diagram. The acceptance standard must meet the requirements of the conducted emission limits of CISPR22 Class B with 6 dB margin. The level of surge is CM/DM $6kV/6kV 2\Omega (1.2/50)$, and the level of impulse current is CM/DM 5kA/5kA (8/20).

EMC test set-up diagram

Note: C10, C11, C15, C16, C17: When temperature is lower than -25°F, the recommended capacitance should be doubled.

R1, R2, R3, R4: 0.25W, 100kΩ RV1: 620V, 385V, 12kA RV2, RV3: 750V, 460V, 12kA RV4: 620V, 385V, 12kA RV5: 620V, 385V, 4.5kA

L1, L2: 3.5mH, 220V, 10A

C1, C2: Ceramic capacitor, 1nF, 250V

C3, C7: Film capacitor, 1µF, 275VAC

C4, C5: 0.01µF, 250V

C6: Film capacitor, 0.68µF, 275VAC

C8, C9: Film capacitor, 1.5µF, 450V

C10, C11: Long life (5000h) aluminum electrolytic capacitor, 390µF, 450V (recommended product model: ELXS451VSN391MR50S NCC)

C12: 2200pF

C13, C14: 100nF, 1kV

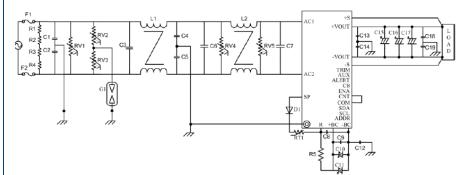
C15, C16, C17: Low ESR aluminum electrolytic capacitor, 470 μ F, 63V (recommended product

model: EKY-630ELL471MK25S NCC)

C18, C19: 1nF, 250V C20, C21: 22nF, 1kV

D1: 1kV, 3A

R5: Cement resistor, 5W, 75Ω


R6, R7: 0.25W, 22 Ω RT1: NTC resistor 1 Ω

G1: 10kA, 1.5kV F1, F2: 15A, 250VAC

48VDC Model

The figure below shows the EMC test set-up diagram. The acceptance standard must meet the requirements of the conducted emission limits of CISPR22 Class B with 6 dB margin. The level of surge is CM/DM $6kV/6kV 2\Omega$ (1.2/50), and the level of impulse current is CM/DM 5kA/5kA (8/20).

EMC test set-up diagram

Note: C10, C11, C15, C16, C17: When the temperature is lower than -25°C, the recommended capacitance should be doubled.

R1, R2, R3, R4: 0.25W, 100kΩ R5: Cement resistor, 5W, 75Ω F1, F2: 15A, 250VAC

RV1: 620V, 385, 12kA RV2, RV3: 750V, 460V, 12kA RV4: 620V, 385V, 12kA RV5: 620V, 385V, 4.5kA

L1: 3.5mH, L2: 5-12mH

C1, C2: Ceramic capacitor, 1nF, 250V C3, C6. C7: Film capacitor, 1µF, 275VAC

C4, C5: 10nF, 250VAC

C8, C9: Film capacitor, 1.5µF, 450V

C10, C11: Long life (5000h) aluminum electrolytic capacitor, 390µF, 450V (recommended product module: ELXS451VSN391MR50S NCC)

C12: 2200pF C13, C14: 100nF, 1kV

C15, C16, C17: Low ESR aluminum electrolytic capacitor, 470µF, 63V (recommended product model: EKY-630ELL471MK25S NCC)

C18, C19: 22nF, 1kV

D1: 1kV, 3A

RT1: NTC resistor 1Ω G1: 10kA, 1.5kV

QUALIFICATION TESTING -

Parameter	Units	Condition
Highly accelerated life test (HALT)	6	Low temperature limit: -60°C; high temperature limit: 110°C; vibration limit: 40G; temperature change rate: 40°C per minute; vibration frequency range: 10-10000Hz
Temperature Humidity Bias (THB)	12	Maximum input voltage; 85°C; 85% RH; 1000 operating hours under lowest load power
High Temperature Operation Bias (HTOB)	12	Rated input voltage; airflow rate: 0.5m/s (100LFM) to 5 m/s (1000 LFM); ambient temperature between +45°C and +55°C; 1000 operating hours; 50% to 80% load
Power and Temperature Cycling Test (PTC)	12	Rated input voltage; airflow rate: 0.5.m/s (1000 LFM); ambient temperature between -40°C and +85°C; 1000 operating hours; 50% load; temperature change rate: 15°C per minute; dwell time: 22 minutes

THERMAL CONSIDERATION-

Thermal Test Point:

Sufficient airflow should be provided to ensure reliable operating of the module. Therefore, thermal components are mounted on the top surface of the module to dissipate heat to the surrounding environment by conduction, convection, and radiation. Proper airflow can be verified by measuring the temperature at the middle of the baseplate.

Middle of the baseplate

Thermal Test Point

Power Dissipation

The module power dissipation is calculated based on efficiency. The following formula reflects the relationship between the consumed power (P_d), efficiency (η), and output power (P_o): $P_d = P_o$ ($1-\eta$)/ η

Page 24 of 25

MECHANICAL CONSIDERATION

Installation

Although the module can be mounted in any direction, free airflow must be available.

Soldering

The module supports standard wave soldering and hand soldering. Reflow soldering is not allowed.

- 1. For wave soldering, the temperature on the module is specified to a maximum of 260°C for 7 seconds at most.
- 2. For hand soldering, the iron temperature should be maintained at 350°C to 420°C, and applied to the module pins for less than 10 seconds.

The module can be rinsed using the isopropyl alcohol (IPA) solvent or other suitable solvents.

COMPANY INFORMATION -

Wall Industries, Inc. has created custom and modified units for over 50 years. Our in-house research and development engineers will provide a solution that exceeds your performance requirements on-time and on budget. Our ISO9001-2008 certification is just one example of our commitment to producing a high quality, well-documented product for our customers.

Our past projects demonstrate our commitment to you, our customer. Wall Industries, Inc. has a reputation for working closely with its customers to ensure each solution meets or exceeds form, fit and function requirements. We will continue to provide ongoing support for your project above and beyond the design and production phases. Give us a call today to discuss your future projects.

Contact Wall Industries for further information:

Phone: ☎(603)778-2300 Toll Free: ☎(888)597-9255 Fax: ☎(603)778-9797

E-mail: sales@wallindustries.com
Web: www.wallindustries.com
Address: 37 Industrial Drive
Exeter, NH 03833