

Size: 1in x 1in x 0.40in (25.4mm x 25.4mm x 10.16mm)

FEATURES

- Wide 2:1 Input Voltage Range
- Fully Regulated Output Voltages
- No Minimum Load Requirement
- Optional Remote On/Off Control
- Optional Heatsink
- RoHS & REACH Compliant
- Over Load and Short Circuit Protection
- Shielded Metal Case with Insulated Baseplate
- Low No Load Power Consumption
- I/O Isolation of 1500VDC
- UL/cUL/IEC/EN 60950-1 Safety Approvals

DESCRIPTION

The DCMJW10 series of DC/DC converters offers up to 10 watts of output power in a 1" x 1" x 0.40" shielded metal case. This series consists of fully regulated single and dual output models with a wide 2:1 input voltage range. Each model in this series has low no load power consumption, over load and short circuit protection, and has optional remote on/off and heatsink. This series has UL/cUL.IEC/EN 60950-1 safety approvals and an I/O isolation of 1500VDC. Please call factory for ordering details.

MODEL SELECTION TABLE											
Single Output Models											
Model Number	Input Voltage	Output	Output Current	Input Current		Ripple &	Efficiency	Maximum	Output		
Wodel Hamber	Range	Voltage		Max Load	No Load	Noise	Linoiditoy	Capacitive Load	Power		
DCMJW10-12S033		3.3VDC	2500mA	838mA		80mVp-p	82%	4700µF			
DCMJW10-12S05	40) /DO	5VDC	2000mA	980mA	15mA	80mVp-p	85%	2200µF	10W		
DCMJW10-12S051	12VDC (9~18VDC)	5.1VDC	2000mA	1000mA		100mVp-p	85%	2200µF			
DCMJW10-12S12	(0 10120)	12VDC	830mA	954mA		100mVp-p	87%	330µF			
DCMJW10-12S15		15VDC	670mA	952mA		100mVp-p	88%	220µF			
DCMJW10-24S033		3.3VDC	2500mA	414mA	12mA	80mVp-p	83%	4700µF	10W		
DCMJW10-24S05	041/100	5VDC	2000mA	490mA		80mVp-p	85%	2200µF			
DCMJW10-24S051	24VDC (18~36VDC)	5.1VDC	2000mA	500mA		100mVp-p	85%	2200µF			
DCMJW10-24S12	(10 3000)	12VDC	830mA	472mA		100mVp-p	88%	330µF			
DCMJW10-24S15		15VDC	670mA	471mA		100mVp-p	89%	220µF			
DCMJW10-48S033		3.3VDC	2500mA	207mA		80mVp-p	83%	4700µF			
DCMJW10-48S05	48VDC (36~75VDC)	5VDC	2000mA	242mA	10mA	80mVp-p	86%	2200µF			
DCMJW10-48S051		5.1VDC	2000mA	250mA		100mVp-p	85%	2200µF	10W		
DCMJW10-48S12	(30 73400)	12VDC	830mA	233mA		100mVp-p	89%	330µF			
DCMJW10-48S15		15VDC	670mA	235mA		100mVp-p	89%	220µF			

MODEL SELECTION TABLE										
Dual Output Models										
Model Number	Input Voltage Output Output Input Current Ri Range Voltage Current Max Load No Load						Efficiency	Maximum Capacitive Load ⁽¹⁾	Output Power	
DCMJW10-12D05		±5VDC	±1000mA	992mA		100mVp-p	84%	1000#µF		
DCMJW10-12D12	12VDC (9~18VDC)	±12VDC	±416mA	956mA	15mA	100mVp-p	87%	150#µF	10W	
DCMJW10-12D15	(9*10000)	±15VDC	±333mA	957mA		100mVp-p	87%	100#μF		
DCMJW10-24D05	0.0.45.0	±5VDC	±1000mA	490mA	12mA	100mVp-p	85%	1000#µF	10W	
DCMJW10-24D12	24VDC (18~36VDC)	±12VDC	±416mA	473mA		100mVp-p	88%	150#µF		
DCMJW10-24D15	(10 3000)	±15VDC	±333mA	468mA		100mVp-p	89%	100#µF		
DCMJW10-48D05	40) /DO	±5VDC	±1000mA	242mA	10mA	100mVp-p	86%	1000#µF		
DCMJW10-48D12	48VDC (36~75VDC)	±12VDC	±416mA	239mA		100mVp-p	87%	150#µF	10W	
DCMJW10-48D15	(00 1000)	±15VDC	±333mA	237mA		100mVp-p	88%	100#μF		

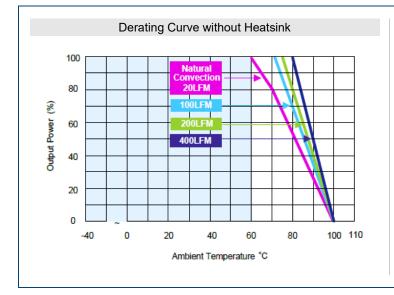
SPECIFICATIONS

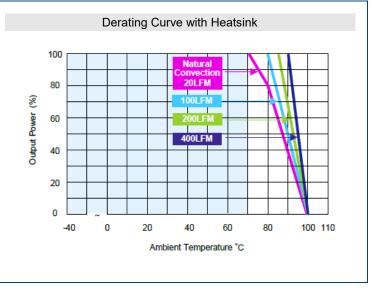
All specifications are based on 25°C, Resistive Load, Nominal Input Voltage, and Rated Output Current unless otherwise noted.

We reserve the right to change specifications based on technological advances.

SPECIFICATION	TES	T CONDITIONS	Min	Тур	Max	Unit
INPUT SPECIFICATIONS	123	T GONDITIONS	141111	, yp	IVIGA	Offic
Input Voltage Range				See ⁻	Tahle	
input voltage range	12VDC Input Models		-0.7	000	25	
Input Surge Voltage (1 sec. Max.)	24VDC Input Models		-0.7		50	VDC
input Surge Voltage (1 Sec. Max.)	48VDC Input Models		-0.7		100	- VDC
			-0.7			
Otant Ha Tharakada	12VDC Input Models				9	\/D0
Start-Up Threshold	24VDC Input Models				18	VDC
	48VDC Input Models				36	
	12VDC Input Models				8.5	
Under Voltage Shutdown	24VDC Input Models				17	VDC
	48VDC Input Models				34	
Input Filter				Internal	Pi Type	
OUTPUT SPECIFICATIONS						
Output Voltage				See ⁻	Гable	
Voltage Accuracy					±2.0	%Vnom.
Line Regulation	Vin=Min. to Max. @Full Loa	ıd			±1.0	%
-		Single Output			±0.5	0/
Load Regulation	lo=0% to 100%	Dual Output			±1.0	%
Voltage Balance	Dual Outputs, Balanced Loa				±2.0	%
Output Power	- ,			See ⁻	Гаblе	
Output Current				See -		
Minimum Load			No M		ad Requirer	ment
Maximum Capacitive Load			140 17	See -		TIOTIC
•		3.3V & 5V Output		80	I abic	1
Ripple & Noise (20MHz bandwidth)	0-20MHz Bandwidth	Other Outputs		100		mVp-p
Transient Recovery Time(2)	250/ Load Ston Change	Other Outputs		300		
Transient Recovery Time Transient Response Deviation	25% Load Step Change 25% Load Step Change					μsec
		00/ FI		±3	±5	%
Cross Regulation (Dual)	Asymmetrical Load 25%/10	U% FL			±5.0	%
Temperature Coefficient				±0.01	±0.02	%/°C
REMOTE ON/OFF CONTROL						
Converter On					Open Circu	
Converter Off			0~1.2V o	r Short Circ	uit (Pin 2 a	
Control Input (on)	Vctrl=5V				0.5	mA
Control Input (off)	Vctrl=0V				-0.5	mA
Control Common			Ref	erenced to	Negative In	put
Standby Input Current				5		mA
PROTECTION						
Short Circuit Protection	Hiccup Mode, Automatic Re	ecovery		0.7		Hz
Over Load Protection	Hiccup	•	110	150		%
ENVIRONMENTAL SPECIFICATION						
Operating Ambient Temperature			-40		+80	°C
Storage Temperature			-50		+125	°C
Case Temperature			- 00		+100	0€
Humidity	Non-Condensing				95	%RH
Cooling ⁽⁵⁾	Non-Condensing			Natural C		/01XI1
RFI			Civ. C			2000
	1 5		SIX-3		ded, Metal (
Lead Temperature	1.5mm from case for 10sec		0.500.000		260	°C
MTBF (Calculated)	MIL-HDBK-217F@25°C, Gr	ouna Benign	2,596,000			Hours
GENERAL SPECIFICATIONS	- O					
Efficiency	Typ. @Max Load			See	able	
Switching Frequency				330		KHz
Isolation Voltage	60 Seconds		1500			VDC
Isolation Voltage	1 Second		1800			VDC
Isolation Resistance	500VDC		1000			ΜΩ

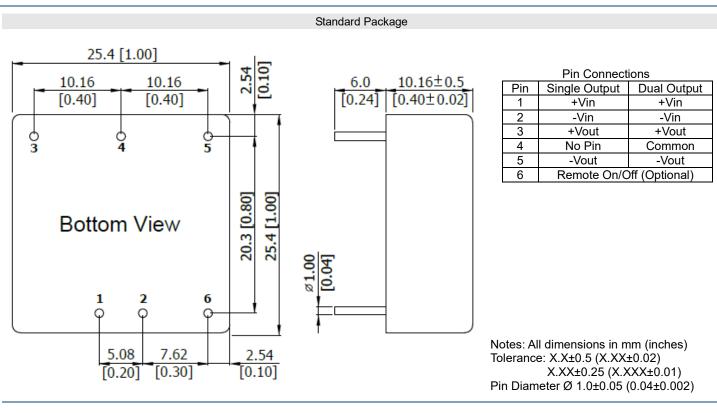
SPECIFICATIONS All specifications are based on 25°C, Resistive Load, Nominal Input Voltage, and Rated Output Current unless otherwise noted. We reserve the right to change specifications based on technological advances.

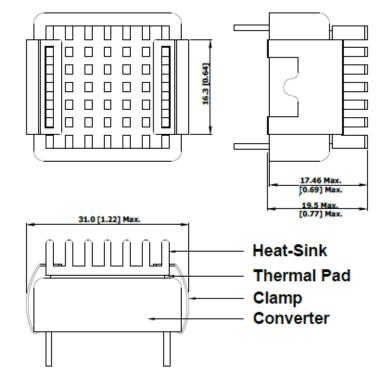

SPECIFICATION	TE	EST CONDITIONS	Min	Тур	Max	Unit				
PHYSICAL SPECIFICATIONS										
Weight	Standard		0.53oz (15g)							
vveignt	Heatsink Attachment		0.070oz (2g)							
Dimensions (L x W x H)	Standard		1in x 1in x 0.4in (25.4mm x 25.4mm x 10.16mm)							
Difficitions (E X VV X 11)	Heatsink		1.22in x 1in x 0.77in (31mm x 25.4mm x 19.5mm)							
Case Material			Aluminu	ım Alloy, Blad	ck Anodized	Coating				
Base Material			FR4 PCB (Flammability to 94V-0 Rated)							
Pin Material					Tinned Copper					
Heatsink Material	ial				Aluminum					
Heatsink Finish		Anodic Treatment (black)								
SAFETY CHARACTERISTICS		JL 60950-1 Recognition (CSA Certificate) ⁽⁷⁾								
Safety Approvals	UL/cL									
EMI		EN55032, FCC Part 15				Class A				
	EN55024									
	ESD	EN61000-4-2 Air±8kV, Contact ±6kV				Α				
EMS	Radiated Immunity	EN61000-4-3 10V/m				Α				
	Fast Transient	EN61000-4-4 ±2kV ⁽⁶⁾				Α				
	Surge	EN61000-4-5 ±1kV ⁽⁶⁾				Α				
	Conducted Immunity	EN61000-4-6 10Vrms				Α				


NOTES

- # for each output.
- 2. Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3. It is recommended to protect the converter by a fast blow fuse in the input supply line.
- 4. Other input and output voltages may be available, please contact factory.
- 5. Natural Convection is about 20LFM but is not equal to still air (0 LFM).
- 6. To meet EN61000-4-4 & EN61000-4-5, an external capacitor across the input pins is required. Suggested capacitor: $330\mu\text{F}/80\text{V}$
- 7. This product is Listed to applicable standards and requirements by UL.

*Due to advances in technology, specifications subject to change without notice.

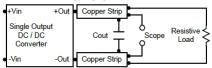

DERATING CURVES -

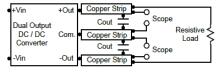


MECHANICAL DRAWINGS

Heatsink (Option -HS)

Advantages of adding heatsink are:
1. Improve heat dissipation and increase stability and reliability of the DC/DC converters at high operating temperatures.


2. To increase operating temperature of the DC/DC converter, please refer to derating curve.



TEST SETUP

Peak-to-Peak Output Noise Measurement Test

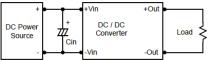
Use a Cout 0.47µF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20MHz. Position the load between 50mm and 75mm from the DC/DC Converter.

TECHNICAL NOTES

Remote On/Off

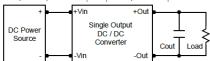
Positive logic remote on/off turns the module on during a logic high voltage on the remote on/off pin and off during a logic low. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the –Vin terminal. The switch can be an open collector or equivalent. A logic low is 0V to 1.2. A logic high is 3.5V to 12V. The maximum sink current at the on/off terminal (Pin 6) during a logic low is -500uA.

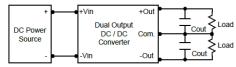
Over Load Protection


To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited duration. At the point of current-limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specified range.

Over Voltage Protection

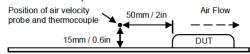
The output over voltage clamp consists of control circuitry, which is independent of the primary regulation loop that monitors the voltage on the output terminals. The control loop of the clamp has a higher voltage set point than the primary loop. This provides a redundant voltage control that reduced the risk of output over voltage.


Input Source Impedance


The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. By using a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 1.00kHz) capacitor of a 1.2μ F for the 1.2ν F for the 1.2

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 3.3µF capacitors at the output.



Maximum Capacitive Load

This series has limitation of maximum connected capacitance on the output. The power module may operate in current limiting mode during start-up, affecting the ramp-up and the startup time. See data sheet for maximum capacitance

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module, and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 100°C. The derating curves are determined from measurements obtained in a test setup.

MODEL NUMBER SETUP :

DCMJW	10	-	24	S	12	-	HS	R
Series Name	Output Power		Input Voltage	Output Quantity	Ouptut Voltage		Heatsink Option	Remote On/Off Option
			12 : 12VDC	S: Single	033: 3.3VDC		None: No Heatsink	None: No Remote On/Off
			24 : 24VDC		05 : 5VDC		HS: Heatsink	R: Remote On/Off
			48: 48VDC		051: 5.1VDC			HSR: Heatsink w/ Remote On/Off
					12 : 12VDC			
					15 : 15VDC			
				D : Dual	5 : ±5VDC			
					12 : ±12VDC			
					15 : ±15VDC			

COMPANY INFORMATION -

Wall Industries, Inc. has created custom and modified units for over 50 years. Our in-house research and development engineers will provide a solution that exceeds your performance requirements on-time and on budget. Our ISO9001 certification is just one example of our commitment to producing a high quality, well-documented product for our customers.

Our past projects demonstrate our commitment to you, our customer. Wall Industries, Inc. has a reputation for working closely with its customers to ensure each solution meets or exceeds form, fit and function requirements. We will continue to provide ongoing support for your project above and beyond the design and production phases. Give us a call today to discuss your future projects.

Contact Wall Industries for further information:

Phone: ☎(603)778-2300 Toll Free: ☎(888)597-9255 Fax: ☎(603)778-9797

E-mail: sales@wallindustries.com
Web: www.wallindustries.com
Address: 37 Industrial Drive

Exeter, NH 03833

©2019 Wall Industries, Inc. Specifications subject to change without notice. Wall Industries is not responsible for typographical errors. The information contained herein is for informational purposes only. This information is provided by Wall Industries and we make no representations or warranties of any kind, express or implied, about the completeness, accuracy, reliability, suitability or availability with respect to the information contained in this document for any purpose. All product and manufacturer names are trademarks or registered trademarks of their respective companies.