

DIP Type (Standard)

Size: 0.56in x 0.36in x 0.40in (14.2mm x 9.1mm x 10.2mm)

SMD Package ("S" Suffix)

Size: 0.52in x 0.36in x 0.40in (13.2mm x 9.1mm x 10.2mm)

OPTIONS

- SMD or SIP Package Type
- Input Voltage
- Single or Dual Output
- Isolation

FEATURES

- 4:1 Ultra Wide Input Range
- Single and Dual Outputs
- Ultra Small Package
- SMD and DIP Packages Available
- SMD Package Qualified for Lead Free Reflow Solder Process According to IPC J-STD-020D
- Short Circuit Protection
- Remote Control

- High Efficiency up to 84%
- No Minimum Load Required
- 1600VDC Input to Output Isolation and 3000VDC for Option
- CE Marked
- Compliant to RoHS II & REACH
- UL60950-1, EN60950-1, and IEC60950-1 Safety Approvals

APPLICATIONS

- Wireless Network
- Telecom/DatacomIndustry Control System
- Measurement Equipment
- Semiconductor Equipment

DESCRIPTION

The DCSDW02 series of DC/DC converters offers up to 2.01 watts of output power in a compact DIP or SMD package. This series consists of single and dual outputs with ultra wide 4:1 input voltage range. Each model in this series has high efficiency, no minimum required load, short circuit protection, and is CE marked and compliant to RoHS II & REACH. This series has 1600VDC input to output isolation and UL60950-1, EN60950-1, and IEC60950-1 safety approvals. Please call factory for order details.

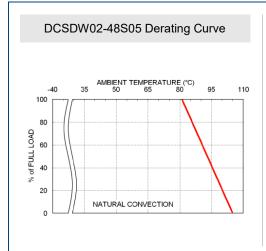
MODEL SELECTION TABLE								
Single Output Models								
Model Number	Input Voltage Range	Output Voltage	Output Current @Full Load	Ripple & Noise	No Load Input Current	Output Power	Maximum Capacitive Load	Efficiency
DCSDW02-12S33		3.3VDC	500mA		25mA		2200µF	77%
DCSDW02-12S05	40) (50	5VDC	400mA		30mA Up to 2.0 30mA		1000μF	80%
DCSDW02-12S12	12VDC (4.5~18)	12VDC	167mA	50mVp-p		Up to 2.01	550µF	83%
DCSDW02-12S15	(4.5 10)	15VDC	134mA				440µF	84%
DCSDW02-12S24	-	24VDC	83mA		30mA		200µF	84%
DCSDW02-24S33		3.3VDC	500mA		15mA		2200µF	76%
DCSDW02-24S05		5VDC	400mA		18mA		1000µF	79%
DCSDW02-24S12	24VDC (9~36)	12VDC	167mA	50mVp-p	18mA	Up to 2.01	550µF	82%
DCSDW02-24S15	(9.30)	15VDC	134mA		18mA		440µF	83%
DCSDW02-24S24		24VDC	83mA		18mA		200µF	82%
DCSDW02-48S33		3.3VDC	500mA		8mA	Up to 2.01	2200µF	75%
DCSDW02-48S05	40.450	5VDC	400mA	50mVp-p	8mA		1000µF	81%
DCSDW02-48S12	48VDC (18~75)	12VDC	167mA		11mA		550µF	83%
DCSDW02-48S15		15VDC	134mA	1	11mA		440µF	82%
DCSDW02-48S24		24VDC	83mA		11mA		200μF	82%

MODEL SELECTION TABLE										
	Dual Output Models									
Model Number	Input Voltage Range	Output Voltage	Output Current @Full Load	Ripple & Noise	No Load Input Current	Output Power	Maximum Capacitive Load	Efficiency		
DCSDW02-12D05	401/120	±5VDC	±200mA		30mA	Up to 2.01	±660µF	80%		
DCSDW02-12D12	12VDC (4.5~18)	±12VDC	±83mA	50mVp-p	30mA		±330µF	84%		
DCSDW02-12D15	(4.5 10)	±15VDC	±67mA		30mA		±220µF	84%		
DCSDW02-24D05	0.0.45.0	±5VDC	±200mA		18mA		±660µF	80%		
DCSDW02-24D12	24VDC (9~36)	±12VDC	±83mA	50mVp-p	18mA Up to 2.01	±330µF	82%			
DCSDW02-24D15	(9 30)	±15VDC	±67mA		18mA		±220µF	81%		
DCSDW02-48D05	48VDC (18~75)	±5VDC	±200mA	50mVp-p	11mA	Up to 2.01	±660µF	79%		
DCSDW02-48D12		±12VDC	±83mA		11mA		±330µF	82%		
DCSDW02-48D15	(10-73)	±15VDC	±67mA		11mA		±220µF	82%		

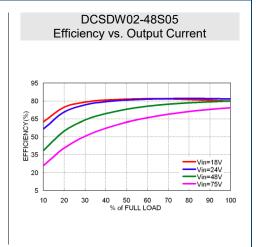
SPECIFICATIONS						
	are based on 25°C, Nominal Input Vo	oltage, and Maximum Output Curre	nt unless of	therwise note	ed.	
	We reserve the right to change spec					
SPECIFICATION	TEST COI	NDITIONS	Min	Тур	Max	Unit
INPUT SPECIFICATIONS						
	12Vin(nom)	4.5	12	18	1	
Input Voltage Range	24Vin(nom)	9	24	36	VDC	
	48Vin(nom)		18	48	75	
	12Vin(nom)				25	
Input Surge Voltage (1 second, max.)	24Vin(nom)				50	VDC
impat sarge vertage (1 eccenta, max.)	48Vin(nom)				100	1 .50
Input Reflected Ripple Current(1)	10 vin(nom)			20	100	mAp-p
Input Filter					tor Type	1111 tp p
OUTPUT SPECIFICATIONS				- Cupus.		
Output Voltage				See	Table	
Voltage Accuracy			-1.0		+1.0	%
Line Regulation	Low Line to High Line at Full Load		-0.2		+0.2	%
-	No Load to Full Load	-1.0		+1.0	%	
Load Regulation	Single				+0.5	%
, and the second	10% Load to 90% Load	-0.8		+0.8	%	
Cross Regulation	Asymmetrical Load 25%/100% FL	-5.0		+5.0	%	
Output Power				See	Table	
Output Current		See Table				
Maximum Capacitive Load			See Table			
Ripple & Noise	Measured by 20MHz Bandwidth			50		mVp-p
Transient Response Recovery Time	25% Load step change			500		μS
		Power Up		5	10	
Start-Up Time	Constant Resistive Load	Remote ON/OFF		5	10	Ms
Temperature Coefficient		Tromete enver	-0.02		+0.02	%/°C
REMOTE ON/OFF CONTROL			-0.02	1	10.02	707 0
		DC-DC ON		Open or Hig	h Impedanc	e
Positive Logic	Ctrl Pin Applied Current via 1kΩ	DC-DC OFF	2.0	3.0	4.0	mA
Remote Off Input Current	Citi i ii i i i i i i i i i i i i i i i	120 20 0		0.0	2.5	mA
	DC-DC ON	DC-DC OFF				
		20200				
Application Circuit	+Vin	+Vin				
Application Circuit	3mA 1kΩ ▼ ← Ctrl	3mA Ctrl				
	CURRENT (1)	3mA				
	SOURCEVin	SOURCEVin				
PROTECTION						
Short Circuit Protection	Continuous			Automotic	Recovery	
Short Gircuit Protection	Continuous			Automatic	necovery	

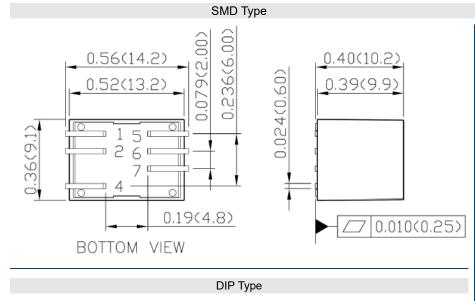
SPECIFICATIONS									
		inal Input Voltage, and Maximum Ou			herwise note	d.			
	We reserve the right to o	hange specifications based on techr	nological adva						
SPECIFICATION		TEST CONDITIONS		Min	Тур	Max	Unit		
ENVIRONMENTAL SPECIFICATIONS	3								
Operating Ambient Temperature	Without Derating		-40		80	°C			
, ,	With Derating			80		+105			
Storage Temperature Range				-55		+125	°C		
Relative Humidity				5		95	%RH		
Thermal Shock					MIL-STE				
Vibration					MIL-STE)-810F			
MTBF	MIL-HDBK-217F, Full	Load			6,204,000		Hours		
GENERAL SPECIFICATIONS									
Efficiency					See T	able			
Switching Frequency				100			kHz		
Isolation Voltage (1 minute)	Standard	Standard					VDC		
isolation voltage (1 minute)	"H" Suffix			3000			VDC		
Isolation Resistance	500VDC			1			GΩ		
Indiation Compaitance	Standard				50				
Isolation Capacitance	"H" Suffix					50	pF		
Lead-Free Reflow Solder Process						IPC J-STD-020D			
floisture Sensitivity Level (MSL)				IPC J-STD-033B Level 2					
PHYSICAL SPECIFICATIONS			<u> </u>						
Weight					0.10oz	(2.7g)			
	DID T			0.52in x 0.36in x 0.40in					
Discounting (Los Most II)	DIP Type				(13.2mm x 9.1mm x 10.2mm)				
Dimensions (L x W x H)	OMD Towns		0.56in x 0.36in x 0.40in						
	SMD Type	SMD Type				(14.2mm x 9.1mm x 10.2mm)			
Case Material				No	n-Conductive	Black Plas	stic		
Base Material				No	n-Conductive	Black Plas	stic		
Potting Material					Silicone (U	L94 V-0)			
SAFETY CHARACTERISTICS			<u> </u>						
		UL	60950-1 ⁽³⁾						
Safety Approvals		EN60905-1							
, , ,	IEC60950-1								
EMI ⁽¹⁾			EN55022			Class	A, Class B		
FOD	ENC4000 4 0	Air ±8kV				Г	£ O-141- 1		
ESD	EN61000-4-2	Contact ±6kV		Perf. Criteria A					
Radiated Immunity	EN61000-4-3	10 V/m				Per	f. Criteria A		
Fast Transient ⁽²⁾	EN61000-4-4	±2kV				Per	f. Criteria A		
Surge ⁽²⁾	EN61000-4-5	±1kV				Per	f. Criteria A		
Power Frequency Magnetic Field	EN61000-4-8	100A/m continuous; 1000A/m 1	second			Per	f. Criteria A		

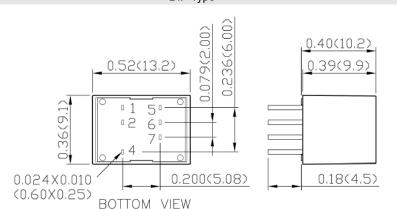
NOTES


- 1. The standard module meets EMI Class A or Class B and input reflected ripple current with external components. For further information, please contact factory.
- An external input filter capacitor is required if the module is to meet EN61000-4-4, EN61000-4-5. Suggested filter: Nippon chemi-con KY series, 220μF/100V.
- 3. This product is Listed to applicable standards and requirements by UL.

CAUTION: This power module is not internally fused. An input line fuse must always be used.


*Due to advances in technology, specifications subject to change without notice.


CHARACTERISTIC CURVES



MECHANICAL DRAWINGS

PIN CONNECTION

PIN	SINGLE	DUAL		
1	+Vin	+Vin		
2	-Vin	-Vin		
4	Ctrl	Ctrl		
5	NC	-Vout		
6	-Vout	Common		
7	+Vout	+Vout		

- 1. All dimensions in inch (mm)
- 2. Tolerance: x.xx±0.02 (x.x±0.5) x.xxx±0.01 (x.xx±0.25)
- 3. Pin pitch tolerance ±0.01 (0.25)
- 4. Pin dimension tolerance ±0.004(0.1)

MODEL NUMBER SETUP

DCSDW	02	-	12	S	33	S	H
Series Name	Output Power		Input Voltage	Output Quantity	Ouptut Voltage	Package Type	Isolation Option
			12: 4.5~18VDC 24: 9~36VDC 48: 18~75VDC	S: Single	33: 3.3VDC 05: 5VDC 12: 12VDC 15: 15VDC 24: 24VDC	None: DIP S: SMD	None: 1600VDC H: 3000VDC
				D :Dual	05 : ±5VDC 12 : ±12VDC 15 : ±15VDC		

COMPANY INFORMATION -

Wall Industries, Inc. has created custom and modified units for over 50 years. Our in-house research and development engineers will provide a solution that exceeds your performance requirements on-time and on budget. Our ISO9001 certification is just one example of our commitment to producing a high quality, well-documented product for our customers.

Our past projects demonstrate our commitment to you, our customer. Wall Industries, Inc. has a reputation for working closely with its customers to ensure each solution meets or exceeds form, fit and function requirements. We will continue to provide ongoing support for your project above and beyond the design and production phases. Give us a call today to discuss your future projects.

Contact Wall Industries for further information:

Phone: ☎(603)778-2300 Toll Free: ☎(888)597-9255 Fax: ☎(603)778-9797

E-mail: sales@wallindustries.com
Web: www.wallindustries.com
Address: 37 Industrial Drive

Exeter, NH 03833

©2019 Wall Industries, Inc. Specifications subject to change without notice. Wall Industries is not responsible for typographical errors. The information contained herein is for informational purposes only. This information is provided by Wall Industries and we make no representations or warranties of any kind, express or implied, about the completeness, accuracy, reliability, suitability or availability with respect to the information contained in this document for any purpose. All product and manufacturer names are trademarks or registered trademarks of their respective companies.