

Standard Models

Size: 2.40x 2.28 x 0.50 inches

Chassis Mount Models (Prefix "CM")

Size: 5.70 x 3.40 x 1.10 inches

Options:

- Heatsink
- Thru-Hole Inserts
- Chassis Mount
- Active Low Remote ON/OFF Control

FEATURES

- Soft-Start
- 200 Watts Output Power
- Under Voltage Lockout
- No Minimum Load Requirements
- Remote ON/OFF Control
- High Efficiency
- Fixed Switching Frequency
- Cost Efficient Solution
- Fast Transient Response
- Made in the USA
- 100% Burn-in

APPLICATIONS

DESCRIPTION

- Telecommunications Equipment
- Network (LANs/WANs) Equipment
- Next Generation Low Voltage, High

Current Microprocessors and ICs

- 4:1 Ultra Wide Input Voltage Range: 9~36VDC
- Industry Standard Half-Brick Footprint
- Remote Sense Compensation to 10% Vout
- Single Outputs Ranging from 12VDC to 48VDC
- 1500VDC I/O Isolation
- Threaded Inserts & Thru-Hole Inserts Available
- Short Circuit, Over Voltage, Over Current, and Over Temperature Protection
- UL60950-1, EN60950-1, IEC60950-1, & EN50155 Safety Approvals
- Heat Sink and Chassis Mount Options Available
- For Use in 12V and 24V Battery Applications
- For Use in Intermediate and Distributed Bus Architectures (IBA)
- Military Applications

The LV200 is a high density, low input voltage, isolated converter with a 4:1 ultra wide input voltage range. Low input voltage converters are uncommon in the industry and the LV200 series offers the flexibility of operation with both 12V and 24V busses. This state-of-the-art converter's features include fast transient response, short circuit protection, over current protection, soft start, and many other features that are required for today's demanding applications.

MODEL SELECTION TABLE								
Model	Input Voltage Output		Output Current		No Load Input	Ripple &	Output Power	Efficiency
Number		voltage	Min Load	Max Load	Current	INOISE	•	
LV12S12-200	12/24 VDC (9 - 36 VDC)	12 VDC	0mA	16.67A	TBD	TBD	200W	
LV12S15-200		15 VDC	0mA	13.33A			200W	
LV12S24-200		24 VDC	0mA	8.33A			200W	TBD
LV12S28-200		28 VDC	0mA	7.14A			200W	
LV12S48-200		48 VDC	0mA	4.17A			200W	

NOTES

1. The LV200 series converters may be paralleled both for redundancy and for higher output current. See page 11 for more details.

2. Maximum output deviation is +10% inclusive of remote sense and trim. If remote sense is not being used the +SENSE should be connected to its corresponding +OUTPUT and likewise the -SENSE should be connected to its corresponding –OUTPUT.

3. Output voltage is adjustable for 10% trim up or -10% trim down of nominal output voltage by connecting a single resistor between Trim and +Rs pins for trim up or between Trim and -Rs pins for trim down. To calculate the value of the resistor R_U and R_D for a particular output voltage see page 9.

4. This series comes with several different options: active low remote on/off control, heatsinks, chassis mount, and thru-hole inserts. See the "Model Number Setup" table on page 12 for more ordering information.

5. This product is Listed to applicable standards and requirements by UL.

*Due to advances in technology, specifications subject to change without notice.

SPECIFICATIONS: LV200 SERIES

	We reserve the right to change specificati	ions based on technological ac	dvances.		1	1
SPECIFICATION	TEST CONDITIONS			Тур	Max	Unit
INPUT SPECIFICATIONS						
Input Voltage Range			9	12/24	36	VDC
UVLO Turn-On At					TBD	VDC
UVLO Turn-off At					TBD	VDC
Input Surge Voltage (100ms)					50	VDC
Input Current	No Load			See	Table	
Input Filter				Pi t	уре	
Reflected Ripple Current				TBD		mA
OUTPUT SPECIFICATIONS						
Output Voltage				See	Table	
Voltage Set Point	\pm RS shorted to \pm Vo		-1.0		+1.0	%
Line Regulation	±RS shorted to ±Vo			0.1	0.2	%
Load Regulation	±RS shorted to ±Vo			0.1	0.2	%
Voltage Adjustability	Max output limited to 200W		-10		+10	%
Remote Sense Compensation	Max output limited to 200W				10	%
Output Power				See	Table	
Output Current				See	Table	
Minimum Load			0			%
Ripple	1µF ceramic and 10µF tantalum				TBD	mVp-p
Spikes	1µF ceramic and 10µF tantalum				TBD	mVp-p
Temperature Drift	P			0.2		%/°C
DYNAMIC RESPONSE		L. L.				
Load Step / ΔV	50% to 100% lo. di/dt=1A/uS			200		mV
Recovery Time	Recovery to within 1% Nominal Vo			TBD		ms
Turn-on Delay	From Vin(min) to Vout (nom)			TBD		ms
Turn-on Overshoot	Full Load Resistive			0		%
Hold-up Time	From Vin (min) to VIIIVO Turn Off					mS
REMOTE ON/OFE CONTROL						
	Min High (ON/OFE pin)	Remote ON	22			
Active High (standard)	Max Low (ON/OFF pin)	Remote OFF			12	VDC
	Max Low (ON/OFF pin)	Remote ON	N/A			
Active Low (optional)	Min High (ON/OFF pin)	Remote OFF	N/A			VDC
		Active High	25		5.0	
Remote ON/OFF Pin Floating	Over operating voltage range	Active Low	Ν/Δ		5.0	VDC
Turn-On Delay (Active High)	ON/OFF (max Low) to Vout (min)	Active Low	11/7	9		ms
Turn-Off Delay (Active High)	ON/OFE (0)/) to Vout (min)			160		115
				100		μ3
Short Circuit Protection				niccup autor	natic recove	ur\/
Current Limit	Power limited-dependent upon SENSE	compensation and TRIM adj				~ %
Over Voltage Protection	Output clamped	compensation and mini adj.	115		130	%
	Case temperature greater than		115	+95	150	70
Over Temperature Protection	Case temperature greater than Case temperature less than			+85		°C
GENERAL SPECIFICATIONS						
Efficiency	Nominal input voltage and full load			See	Table	
Switching Frequency				400		kHz
Isolation Voltage	1 minute (basic insulation)			1500		VDC
Isolation Resistance	500VDC		10	500		MO
Isolation Canacitance						nF
					עטי	μr
Operating Case Temporature	Max ambient limited by OTP		_40		⊥100	۰r
Storage Temperature					+100	ر د
					05	0/ DLI
Neiduve Fluitliully			5	1	30	/0 KП

MTBF

Calculated using BELLCORE TR-332 Method 1 case 3

hours

TBD

SPECIFICATIONS: LV200 SERIES

All specifications are based on 25°C, Nominal Input Voltage, and Maximum Output Current unless otherwise noted.

we reserve the right to change specifications based on technological advances.								
SPECIFICATION	TEST CONDITIONS			Тур	Max	Unit		
PHYSICAL SPECIFICATIONS								
Woight	Standard models			4.0oz (113g)				
weight	Chassis Mount Models			7.52oz (213g)				
	Standard models		2.40 x 2.28 x 0.50 inches (61.0 x 57.9 x 12.7					
Dimensions (L x W x H)	Chassis Mount Models			5.70 x 3.40 x 1.10 inches (144.8 x 86.4 x 28.0 mm)				
Case Material				Thick, alur	ninum alloy			
Base Material				TBD				
Potting Material			TBD					
Shielding		Six-sided						
SAFETY & EMC CHARACTERISTICS								
Safety Approvals			IEC60950-1, UL60950-1 ⁽⁵⁾ , EN60950-1,					
						EN50155		
EMI	EN55011, EN55022					Class A		
ESD	EN61000-4-2	Air ±8kV and Contact ±6kV			Per	rf. Criteria A		
Radiated Immunity	EN61000-4-3	20 V/m			Per	rf. Criteria A		
Fast Transient	EN61000-4-4	±2kV			Pei	rf. Criteria A		
Surge	EN61000-4-5 EN55024 ±2kV and EN50155 ±2kV		Perf. Criteri			rf. Criteria A		
Conducted Immunity	EN61000-4-6 10 Vrms				Pei	rf. Criteria A		

MECHANICAL DRAWING

Advanced Publication

MECHANICAL DRAWING

CHARACTERISTICS (Based on LV12S15-200)

Max Ambient vs lo (Vin=24VDC)	Efficiency vs Output Current
TBD	TBD
Input Current vs Input Voltage	Power Dissination vs Input Voltage
TBD	TBD
Min Load Input Current & Power Dissipation vs Input Voltage	"Remote Off" Input Current & Power Dissipation vs Input Voltage
TBD	TBD

CHARACTERISTICS (Based on LV12S15-200)

Photo 1: Remote Turn On	Photo 2: Remote Turn Off
TBD	TBD
Vin=24V, lout=1.33A	Vin=24V, lout=13.33A
Photo 3: Normal Turn On	Photo 4: Normal Turn On
TBD	TBD
Vin=24V, lout=1.33A	Vin=24V, lout=13.33A
Photo 5: Remote Turn Off	Photo 6: Remote Turn Off
TBD	TBD
Vin=24V, lout=1.33A	Vin=24V, lout=13.33A

CHARACTERISTICS (Based on LV12S15-200)

with 680µFaluminum electrolytic and 12µH series inductor

DESIGN CONSIDERATIONS

Under Voltage Lock Out (UVLO)

The converter output is disabled until the input voltage exceeds the UVLO turn-on limit. The converter will remain ON until the input voltage falls below the UVLO turn-off limit.

Over Current Protection

The converter is protected from short circuit and over current conditions. During these fault conditions, the converter output will 'hiccup'. The converter output will recover once the short or over current fault is removed.

Over Temperature Protection (OTP)

The converter has internal thermal protection that will shut the converter OFF once the case temperature exceeds the OTP turn-off limit. The converter will resume operation when the case temperature has dropped below the OTP turn-on limit.

Input Filter

It is recommended to bypass the +Vin and –Vin pins of the converter with a minimum of 680µF (100V minimum) capacitor. No other bypassing is needed. However, to reduce the input ripple beyond what is seen in Photo 1, larger values of capacitance may be used. Additionally, an inductor may be placed between the source and the previously mentioned capacitor. No inductor should be placed between the capacitor and the input to the converter.

Output Filter

No additional output capacitor is needed for the power supply to operate. However, to reduce the ripple and noise on the output, additional capacitance may be added. A 100μ F Ceramic capacitor may be added across the +Vo and –Vo pins to reduce the ripple and spike noise. Additional capacitance in the form of a tantalum or aluminum electrolytic may also be placed across these pins in order reduce ripple and improve the transient peak-to-peak voltage deviation.

Remote Sense

To improve the regulation at the load, route the connections from the -RS and the +RS pins to the –Vo and +Vo connections at the load. This will force the converter to regulate the voltage at the load and not at the pins of the

converter. If it is not desired to use the Remotes Sense feature, the –RS and +RS pins may be left open or they may be shorted to the -Vo and +Vo pins respectively. Shorting the RS pins to the Vo pins will reduce the voltage drops through the converter pins.

Remote ON/OFF

The converter has the ability to be remotely turned ON or OFF. The LV200 series is Active-High. Active-High means that a logic high at the ON/OFF pin will enable the supply. With Active-High, if the ON/OFF pin is left floating, the supply will be enabled.

Output Voltage Trim

The output is adjustable $\pm 10\%$ of rated output voltage. To trim the output voltage down, place the trim resistor between the Trim and -Rs pins. To trim the output voltage up, place the trim resistor between the Trim and +Rs pins.

The value of the trim resistor with respect to the desired output voltage (Vo) can be derived from the following formulas.

$$RTH = \frac{R_1 \cdot V_o \cdot \frac{V_{onom}}{U_1}}{V_o - V_{onom}} - \frac{R_1 \cdot V_o}{V_o - V_{onom}} - R_{lim} (in K\Omega)$$

Trim Down

$$RTL = \frac{R_1 \cdot V_o}{V_{onom} - V_o} - R_{lim} \quad (in \ K\Omega)$$

TEST SETUP

Regulation and Efficiency Setup

To ensure that accurate measurements are taken, the voltage measurements are taken directly at the terminal of the module. This minimizes errors due to contact and trace lengths between the load and the output of the supply. The following is a diagram of the test setup.

Output Ripple Voltage Setup

The module is tested with a 1μ F ceramic capacitor in parallel with a 10μ F tantalum capacitor across the output terminals.

Ripple Voltage Probe Setup

Input Reflected Ripple Current & Input Ripple Current Setup

The module is tested for input reflected ripple current (Irrc) and input ripple current (Irc). The input ripple voltage is also measured at the pins with the following input filter. If there is a need to reduce input ripple current/voltage then additional ceramic capacitors can be added to the input of the converter.

Converter Thermal Consideration

The converter is designed to operate without convective cooling if the derating curves are followed. The converter can operate at higher temperatures if airflow is applied. Airflow should be aligned lengthwise to the converter for optimum heat transfer.

Paralleling Converters

The LV200 series converters may be paralleled both for redundancy and for higher output current. However, in order to do this, a high-current, low Vf, schottky diode must be placed at the +Vo pin of each supply as shown below. To improve sharing, tie the two TRIM pins together. The converters may be trimmed by adding a resistor value from each TRIM pin to \pm RS pin, or alternatively, a single resistor of half the value from the common TRIM pins to the common \pm RS pins.

MODEL NUMBER SETUP

CM	LV	12	S	15	200
Chassis Mount	Series Name	Input Voltage	Output Quantity	Ouptut Voltage	
None Standard CM: Chassis Mount		12: 9-36VDC	S: Single Output	 12: 12 VDC 15: 15 VDC 24: 24 VDC 28: 28 VDC 48: 48 VDC 	200: 200 Watts

	R	TH		HS		
Remote ON/OFF		Inserts		Heatsink		
None: R:	Active High Active Low	None: TH:	Threaded Thru-hole	None: H:	No heatsink Heatsink	

Note: Models with thru-hole inserts cannot be equipped with a heatsink.

COMPANY INFORMATION

Wall Industries, Inc. has created custom and modified units for over 50 years. Our in-house research and development engineers will provide a solution that exceeds your performance requirements on-time and on budget. Our ISO9001: 2015 certification is just one example of our commitment to producing a high quality, well-documented product for our customers.

Our past projects demonstrate our commitment to you, our customer. Wall Industries, Inc. has a reputation for working closely with its customers to ensure each solution meets or exceeds form, fit and function requirements. We will continue to provide ongoing support for your project above and beyond the design and production phases. Give us a call today to discuss your future projects.

Contact Wall Industries for further information:

Phone:	1 (603)778-2300
Toll Free:	(888) 597-9255
Fax:	2 (603)778-9797
E-mail:	sales@wallindustries.com
Web:	www.wallindustries.com
Address:	37 Industrial Drive
	Exeter, NH 03833

©2019 Wall Industries, Inc. Specifications subject to change without notice. Wall Industries is not responsible for typographical errors. The information contained herein is for informational purposes only. This information is provided by Wall Industries and we make no representations or warranties of any kind, express or implied, about the completeness, accuracy, reliability, suitability or availability with respect to the information contained in this document for any purpose. All product and manufacturer names are trademarks or registered trademarks of their respective companies.