

LANCW3 SERIES

2:1 & 3:1 Wide Input Voltage Ranges Single & Dual Outputs High Power Density in 24-Pin DIP Package 3 Watt DC/DC Power Converters

FEATURES

- RoHS Compliant
- 3 Watts Output Power
- 1.25" x 0.8" x 0.4" 24-Pin DIP Plastic Package
- 2:1 & 3:1 Wide Input Voltage Ranges
- 1500VDC I/O Isolation
- High Efficiency up to 81%

- Single & Dual Fully Regulated Outputs
- -40°C to +85°C Operating Temperature Range
- Short Circuit and Over Load Protection
- Input Filter meets EN55022 Class A and FCC Level A
- UL/cUL 60950-1 (CSA Certificate) & IEC/EN 60950-1 Safety Approvals

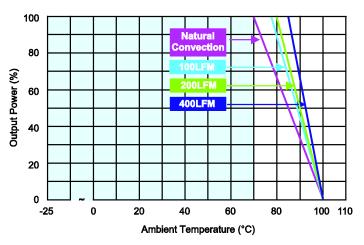
DESCRIPTION

The LANCW3 series of DC/DC power converters provides 3 Watts of output power in a 1.25" x 0.8" x 0.4" 24-pin DIP plastic package. This series consists of fully regulated single and dual output models with 2:1 wide input voltage ranges of 4.5~9VDC, 9~18VDC, 18~36VDC, and 36~75VDC and a 3:1 input voltage range of 10~30VDC. These converters operate over a temperature range of -40°C to +85°C while maintaining all specifications. This product features an input filter that meets EN 55022 Class A and FCC Level A requirements. Other features include efficiency up to 81%, 1500VDC I/O isolation, and over load and short circuit protection. These converters are RoHS compliant and have UL 60950-1 (CSA Certificate) and IEC/EN 60950-1 safety approvals. The LANCW3 series offers an economical solution for many cost critical applications in battery-powered equipment and instrumentation.

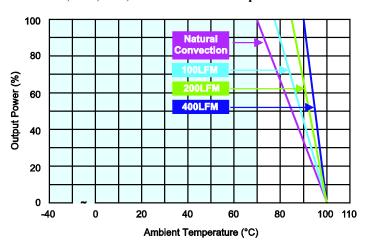
SPECIFICATIONS: LANCW3									
	re based on 25°C, Nominal Input Voltage, and Maximum Output Cur		otherwise note	ed.					
SPECIFICATION	Ve reserve the right to change specifications based on technological a TEST CONDITIONS	Min	Тур	Max	Unit				
INPUT SPECIFICATIONS	TEST CONDITIONS	IVIIII	тур	Max	Ont				
IN CI SI DOMESTICATIONS	5VDC nominal input models	4.5	5	9					
	12VDC nominal input models	9	12	18	VDC				
Input Voltage Range	20VDC nominal input models	10	20	30					
input voltage Nalige	24VDC nominal input models	18	24	36	- 1				
	48VDC nominal input models	36	48	75	_				
	5VDC nominal input models	-0.7	10		11				
	12VDC nominal input models	OC nominal input models -0.7 2							
Input Surge Voltage (1s max.)	20VDC nominal input models								
	24VDC nominal input models	-0.7		50 50)				
	48VDC nominal input models	-0.7		100					
	5VDC nominal input models	3.5	4	4.5					
	12VDC nominal input models	4.5	7	9	_				
Start van Walte aa				9	VDC				
Start-up Voltage	20VDC nominal input models	4.5	7	-	VDC				
	24VDC nominal input models	8	12	18					
	48VDC nominal input models	16	24	36					
	5VDC nominal input models		3.5	4					
	12VDC nominal input models		6.5	8.5					
Under Voltage Shutdown	20VDC nominal input models		6.5	8.5	VDC				
	24VDC nominal input models		11 22	17 34					
	48VDC nominal input models								
Input Current				Гable					
Reflected Ripple Current (Page 5)			See 7	Γable					
Reverse Polarity Input Current				1	A				
Short Circuit Input Power			1000	1500	mW				
Internal Power Dissipation				2500	mW				
	5VDC nominal input models		1500mA slo	w-blow type					
Input Fuse	12VDC nominal input models	700mA slow-blow type							
	20VDC nominal input models	600mA slow-blow type							
	24VDC nominal input models	350mA slow-blow type							
	48VDC nominal input models	135mA slow-blow type							
OUTPUT SPECIFICATIONS	1	1							
Output Voltage			See '	Гable					
Line Regulation	Low line to high line at full load		±0.2	±0.5	%				
Load Regulation	10% to 100% full load		±0.2	±0.5	%				
Output Voltage Accuracy	Full load an nominal Vin		±0.5	±2.0	%				
Output Voltage Balance	Dual Outputs, Balanced loads		±0.5	±2.0	%				
Output Power	Buai Guipuis, Buinneed Ioads			Table	70				
Output Current				Table					
Minimum Load (Note 1)				Table					
William Load (Note 1)			45	60	mVp-p				
Discuss (20MH-DW) (Days 5)	Over line lead and term creture		43						
Ripple & Noise (20MHz BW) (Page 5)	Over line, load, and temperature			100 15	mVp-p				
	Massured to within 10/ amon hand for a ster shares in section				mV_{rms}				
Transient Recovery Time	Measured to within 1% error band for a step change in output load from 75% to 100%		300	500	μs				
Transient Response Deviation	25% load step change		±3	⊥5	%				
1	2370 toad step change		±3 ±0.01	±5 ±0.02	%/°C				
Temperature Coefficient			±0.01	±0.02	70/ C				
PROTECTION Start Given A Protection									
Short Circuit Protection	C.1.11 1.	100		nuous	0/				
Over Load Protection	foldback	120	TBD		%				
GENERAL SPECIFICATIONS	N		<u> </u>	r.1.1.					
Efficiency	Nominal input voltage and full load		_	Γable	***				
Switching Frequency			330		KHz				
Isolation Voltage (Input to Output)	60 seconds	1500			VDC				
Isolation Resistance	500VDC	1000			ΜΩ				
Isolation Capacitance	20VDC nominal input models 100KHz, 1V			500	pF				
•	Others 100KHz, 1 v			150	Ρı				
Maximum Capacitive Load (Page 6)		See Table							

SPECIFICATIONS: LANCW3 SERIES All specifications are based on 25°C, Nominal Input Voltage, and Maximum Output Current unless otherwise noted. We reserve the right to change specifications based on technological advances **SPECIFICATION** TEST CONDITIONS Min Typ Max Unit **ENVIRONMENTAL SPECIFICATIONS** 20VDC nominal input models -25 +85 With derating Operating Ambient Temperature Range °C -40 +85 Others °C Case Temperature +90 -50 +125 °C Storage Temperature 95 Humidity (non-condensing) % RH "natural convection" is about 20LFM but is not equal to still air Free air convection (20LFM) Cooling Lead Temperature 1.5mm from case for 10 seconds °C 260 MIL-HDBK-217F at 25°C, Ground Benign MTBF (calculated) 1,000,000 hours PHYSICAL SPECIFICATIONS Weight 0.44oz (12.4g) 1.25 x 0.80 x 0.40 inches (31.80 x 20.3 x 10.2 mm) Dimensions (L x W x H) Non-conductive black plastic Case Material Flammability UL 94V-0 rated **SAFETY & EMI** UL/cUL 60950-1 recognition (CSA certificate)(3). IEC/EN 60950-1 Safety Approvals Conducted EMI Compliance to EN 55022, class A and FCC part 15, class A

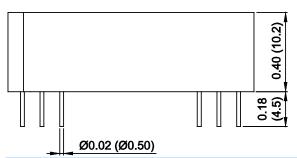
				3.50	DEV 65	T T CETT					
MODEL SELECTION TABLE											
SINGLE OUTPUT MODELS											
Model Number	Andel Number Input Voltage		put Output Current		Input Current		Reflected Ripple	eflected Ripple Output	Efficiency	Maximum	UL
	Input voltage	Voltage	Min (1)	Max	No Load	Max Load	Current (Typ)	Power		Capacitive Load	Approval (3)
LANC505W3	5 VDC (4.5 – 9 VDC)	5 VDC	60mA	600mA	40mA	857mA	100mA	3W	70%	2000μF	60950-1
LANC512W3		12 VDC	25mA	250mA		811mA		3W	74%		60950-1
LANC515W3	(,)	15 VDC	20mA	200mA		811mA		3W	74%		60950-1
LANC1205W3	12 VDC	5 VDC	60mA	600mA		329mA	30mA	3W	76%		60950-1
LANC1212W3	(9 – 18 VDC)	12 VDC	25mA	250mA	20mA	313mA		3W	80%	2000μF	60950-1
LANC1215W3	() 10 VBC)	15 VDC	20mA	200mA		313mA		3W	80%		60950-1
LANC2405W3	24 VDC	5 VDC	60mA	600mA		162mA		3W	77%		60950-1
LANC2412W3	(18 – 36 VDC)	12 VDC	25mA	250mA	5mA	154mA	15mA	3W	81%	2000μF	60950-1
LANC2415W3	(18 – 30 VDC)	15 VDC	20mA	200mA		154mA		3W	81%		60950-1
LANC4805W3	40 V/DC	5 VDC	60mA	600mA		81mA		3W	77%		60950-1
LANC4812W3	48 VDC (36 – 75 VDC)	12 VDC	25mA	250mA	3mA	77mA	10mA	3W	81%	2000μF	60950-1
LANC4815W3	(30 – 73 VDC)	15 VDC	20mA	200mA		77mA		3W	81%		60950-1
LANC2005W3	20 110 0	5 VDC	60mA	600mA		188mA	20mA	3W	80%	4000μF	-
LANC2012W3	20 VDC (10 – 30 VDC)	12 VDC	25mA	250mA	5mA	188mA		3W	80%		-
LANC2015W3	(10 – 30 VDC)	15 VDC	20mA	200mA		188mA	1	3W	80%	1	-
				I	OUAL OU'	TPUT MO	DELS			-	
M LIN I	Y 4 X7 14	Output	Output	Current	Input (Current			Efficiency	Maximum	UL
Model Number	Input Voltage	Voltage	Min (1)	Max	No Load	Max Load	Current (Typ)	Power	Efficiency	Capacitive Load	Approval (3)
LANC512DW3	5 VDC	$\pm 12~VDC$	±12.5mA	±125mA	40mA	811mA	100mA	3W	74%	±1000µF	-
LANC515DW3	(4.5 - 9 VDC)	$\pm 15~\text{VDC}$	±10mA	$\pm 100 mA$	40IIIA	811mA	TOOMA	3W	74%	±1000μ1	-
LANC1212DW3	12 VDC	±12 VDC	±12.5mA	±125mA	313mA	30mA	3W	80%	±1000μF	60950-1	
LANC1215DW3	(9 – 18 VDC)	±15 VDC	±10mA	±100mA	ZUIIIA	20mA 313mA		3W		80%	60950-1
LANC2412DW3	24 VDC	±12 VDC	±12.5mA	±125mA	5 an A	154mA	15 4	3W	81%	+1000E	-
LANC2415DW3	(18 - 36 VDC)	±15 VDC	±10mA	±100mA	5mA	154mA 15mA		3W	81%	±1000μF	-
LANC4812DW3	48 VDC	±12 VDC	±12.5mA	±125mA	2 4	77mA	10 A	3W	81%	1000E	60950-1
LANC4815DW3	(36 – 75 VDC)	±15 VDC	±10mA	±100mA	3mA	77mA	10mA	3W	81%	±1000μF	60950-1
LANC2012DW3	20 VDC	±12 VDC	±12.5mA	±125mA	5 A	188mA	20. 4	3W	80%	+470 F	-
LANC2015DW3	(10 - 30 VDC)	±15 VDC	±10mA	±100mA	5mA	188mA	20mA	3W	80%	±470μF	-


NOTES

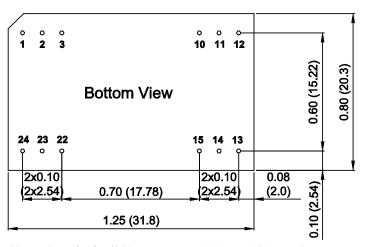
- 1. These power converters require a minimum output loading to maintain all specified regulations. Operation under no-load conditions will not damage these devices; however, they may not meet all the listed specifications.
- 2. All DC/DC converters should be externally fused at the front end for protection.
- 3. UL approval can be added to any products not currently listed if required.
- *Due to advances in technology, specifications are subject to change without notice.



DERATING CURVES



5V, 12V, 24V, and 48V Nominal Input Models



MECHANICAL DRAWING

Unit: inches (mm)

TEST CONFIGURATIONS

 $(4.7\mu H)$ and Cin $(220\mu F, ESR < 1.0\Omega)$ at 100 KHz to Capacitor Cin offsets possible battery impedance.

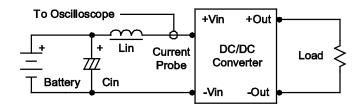
PIN CONNECTIONS					
Pin	Single Output Dual Output				
1	+Vin	+Vin			
2	No Connection	-Vout			
3	No Connection	Common			
10	-Vout	Common			
11	+Vout	+Vout			
12	-Vin	-Vin			
13	-Vin	-Vin			
14	+Vout	+Vout			
15	-Vout	Common			
22	No Connection	Common			
23	No Connection	-Vout			
24	+Vin	+Vin			

NOTES: Input Reflected-Ripple Current Test Setup

1. Tolerance: X.XX±0.01 (X.X±0.25) Input reflected-X.XXX±0.005 (X.XX±0.13) ripple current is

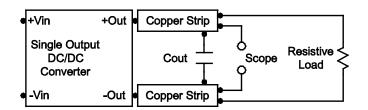
2. Pin Diameter: 0.02±0.002 (0.5±0.05)

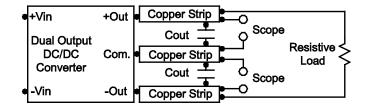
3. Case Size: 1.25 x 0.80 x 0.40 inches (31.8 x 20.3 x 10.2 mm)


4. Case Material: Non-conductive black plastic

5. Flammability: UL 94V-0 rated with an inductor Lin

6. Weight: 0.44oz (12.4g) with an inductor Emsimulate source impedance.


Current ripple is measured at the input terminals of the module. Measurement bandwidth is 0-500 KHz.

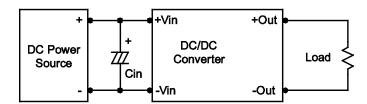


Peak-to-Peak Output Noise Measurement Test

Use a Cout 0.47μF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20MHz. Position the load between 50mm and 75mm from the DC/DC Converter.

DESIGN & FEATURE CONSIDERATIONS

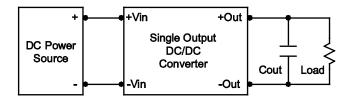
Over Current Protection

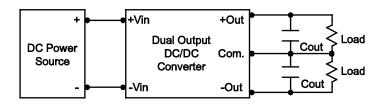

To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited duration. At the point of current-limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specified range.

Input Source Impedance

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module.

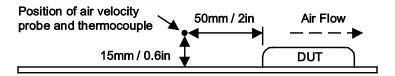
In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup.


Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 KHz) capacitor of 8.2μ F for 5V nominal input models, a 3.3μ F for 12V nominal input models, and a 1.5μ F for 24V and 48V nominal input models.



Output Ripple Reduction

A good quality low ESR capacitor placed as close as possible across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use $3.3\mu F$ capacitors at the output.



Maximum Capacitive Load

The LANCW3 series has a limitation of maximum connected capacitance on the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the start-up time. The maximum capacitance can be found in the model selection table.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module, and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 90°C. The derating curves are determined from measurements obtained in a test setup.

COMPANY INFORMATION

Wall Industries, Inc. has created custom and modified units for over 50 years. Our in-house research and development engineers will provide a solution that exceeds your performance requirements on-time and on budget. Our ISO9001: 2015 certification is just one example of our commitment to producing a high quality, well-documented product for our customers.

Our past projects demonstrate our commitment to you, our customer. Wall Industries, Inc. has a reputation for working closely with its customers to ensure each solution meets or exceeds form, fit and function requirements. We will continue to provide ongoing support for your project above and beyond the design and production phases. Give us a call today to discuss your future projects.

Contact Wall Industries for further information:

Phone: ☎(603)778-2300
Toll Free: ☎(888)597-9255
Fax: ☎(603)778-9797

E-mail: sales@wallindustries.com
Web: www.wallindustries.com
Address: 37 Industrial Drive

Exeter, NH 03833

©2019 Wall Industries, Inc. Specifications subject to change without notice. Wall Industries is not responsible for typographical errors. The information contained herein is for informational purposes only. This information is provided by Wall Industries and we make no representations or warranties of any kind, express or implied, about the completeness, accuracy, reliability, suitability or availability with respect to the information contained in this document for any purpose. All product and manufacturer names are trademarks or registered trademarks of their respective companies.