DCQA100 SERIES

2.28 x 1.45 x 0.50 inches (57.9 x 36.8 x 12.7 mm)

Applications:

- Automation
- Telecom/Datacom
- Industry Control Systems
- ICP
- Measurement

FEATURES

- Soft Start
- Single Outputs
- Input Under Voltage Protection
- High Efficiency up to 93%
- Remote ON/OFF Control
- 2:1 Wide Input Voltage Ranges
- No Minimum Load Required
- 2250VDC I/O Basic Insulation
- Voltage Adjustability

- Low Stand-by Power Consumption
- Industry Standard Quarter-brick Package
- Up to 108 Watts Maximum Output Power
- Short Circuit, Over Voltage, Over Load, & Over Temp. Protection
- UL60950-1, EN60950-1, and IEC60950-1 Safety Approvals
- CE Marked
- RoHS & REACH Compliant
- Optional Heatsinks Available (Suffix "HS")
- Threaded (Standard) or Thru-Hole (Optional) Inserts Available

DESCRIPTION

The DCQA100 series of DC/DC power converters provides up to 108 Watts of output power in a 2.28" x 1.45" x 0.5" industry standard quarter-brick package. This series has single output models with 2:1 wide input voltage ranges of 8.5-22VDC, 16.5-36VDC, and 33-75VDC. Some features include high efficiency up to 93%, 2250VDC I/O basic insulation, and remote ON/OFF control. These converters are also protected against input under voltage, short circuit, over voltage, over load, and over temperature conditions. All models are RoHS compliant and have UL60950-1, EN60950-1, and IEC60950-1 safety approvals. Several different options are available for this series including negative logic remote ON/OFF, heatsinks, and thruhole inserts.

MODEL SELECTION TABLE										
Model Number	Input Voltage	Output	Output	Current	Output	No Load	Output	Efficiency	Maximum	
Model Number	Range	Voltage	Min Load	Max Load	Ripple & Noise	Input Current	Power	Efficiency	Capacitive Load	
DCQA100-12S33		3.3 VDC	0mA	25A	75mVp-p	50mA	82.5W	89%	75,000µF	
DCQA100-12S05		5 VDC	0mA	18A	75mVp-p	50mA	90W	90%	36,000µF	
DCQA100-12S12	12 VDC	12 VDC	0mA	7.5A	100mVp-p	50mA	90W	91%	6250µF	
DCQA100-12S15	_	15 VDC	0mA	6A	100mVp-p	50mA	90W	91%	4000µF	
DCQA100-12S24	(8.5 - 22 VDC)	24 VDC	0mA	3.7A	200mVp-p	50mA	88.8W	90%	1540µF	
DCQA100-12S30		30 VDC	0mA	3A	200mVp-p	50mA	90W	90%	1000µF	
DCQA100-12S48		48 VDC	0mA	1.8A	300mVp-p	50mA	86.4W	89%	380µF	
DCQA100-24S33		3.3 VDC	0mA	25A	75mVp-p	25mA	82.5W	89%	75,000µF	
DCQA100-24S05		5 VDC	0mA	18A	75mVp-p	25mA	90W	90%	36,000µF	
DCQA100-24S12	24 VDC	12 VDC	0mA	7.5A	100mVp-p	25mA	90W	91%	6250µF	
DCQA100-24S15		15 VDC	0mA	6A	100mVp-p	25mA	90W	91%	4000µF	
DCQA100-24S24	(16.5 - 36 VDC)	24 VDC	0mA	3.7A	200mVp-p	25mA	88.8W	92%	1540µF	
DCQA100-24S30		30 VDC	0mA	3A	200mVp-p	25mA	90W	91%	1000µF	
DCQA100-24S48		48 VDC	0mA	1.8A	300mVp-p	25mA	86.4W	89%	380µF	
DCQA100-48S33		3.3 VDC	0mA	25A	75mVp-p	15mA	82.5W	89%	75,000µF	
DCQA100-48S05		5 VDC	0mA	21A	75mVp-p	15mA	105W	91%	42,000µF	
DCQA100-48S12	48 VDC	12 VDC	0mA	9A	100mVp-p	15mA	108W	90%	7500µF	
DCQA100-48S15		15 VDC	0mA	7A	100mVp-p	15mA	105W	91%	4600µF	
DCQA100-48S24	(33 - 75 VDC)	24 VDC	0mA	4.5A	200mVp-p	15mA	108W	93%	1870µF	
DCQA100-48S30		30 VDC	0mA	3.5A	200mVp-p	15mA	105W	92%	1160µF	
DCQA100-48S48		48 VDC	0mA	2.2A	300mVp-p	15mA	105.6W	91%	460µF	

NOTES

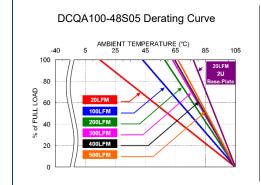
- 1. Input Source Impedance: The power modules will operate to specifications without external components, assuming that the source voltage has very low impedance and reasonable input voltage regulation. Highly inductive source impedances can affect the stability of the power module. Since real-world voltage sources have finite impedance, performance is improved by adding an external filter capacitor. We recommend using Nippon Chemi-con KY series, 100µF/100V.
- 2. Maximum output deviation is +10% inclusive of remote sense and trim. If remote sense is not being used, sense pins should connect to the output pins with the same polarity.
- 3. The DCQA100 series can only meet EMI Class A or Class B with external components added. Please contact factory for more information.
- 4. An external input filter capacitor is required if the module has to meet EN61000-4-4, EN61000-4-5. We recommend connecting two pieces of aluminum electrolytic capacitors (Nippon chemi-con KY series, 220μF/100V).
- 5. Both positive logic and negative logic remote ON/OFF control is available. Positive logic remote ON/OFF comes standard; for negative logic remote ON/OFF add the suffix "R" to the model number (Ex: DCQA100-48S24R).
- 6. Optional heatsinks available. See page 5 for ordering details.
- 7. M3 x 0.5 threaded-thru inserts come standard. For Ø.126 thru-hole inserts add the suffix "TH" to the model number (Ex: DCQA100-48S24TH). Models with thru-hole inserts cannot be equipped with a heatsink.
- 8. BASE-PLATE GROUNDING: EMI can be reduced when two screw bolts connected to shield plane.
- 9. This product is Listed to applicable standards and requirements by UL.

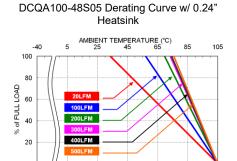
CAUTION: This power module is not internally fused. An input line fuse must always be used.

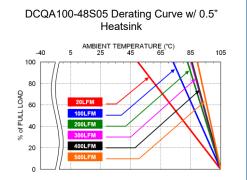
Due to advances in technology, specifications are subject to change without notice.

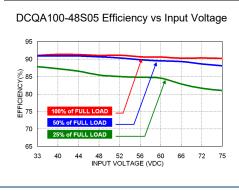
SPECIFICATIONS: DCQA100 SERIES

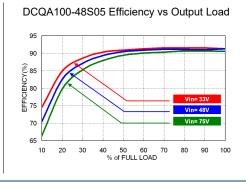
All specifications are based on 25°C, Nominal Input Voltage, and Full Load unless otherwise noted. We reserve the right to change specifications based on technological advances.


SPECIFICATION	TEST CON	DITIONS	Min	Тур	Max	Unit
INPUT SPECIFICATIONS	1.5.5					
	12VDC nominal input models		8.5	12	22	
Input Voltage Range	24VDC nominal input models		16.5	24	36	VDC
	48VDC nominal input models		33	48	75	
	12VDC nominal input models				9	
Start-Up Voltage	24VDC nominal input models			18	VDC	
, ,	48VDC nominal input models				36	
	12VDC nominal input models		7.3	7.7	8.1	
Shutdown Voltage	24VDC nominal input models		15.5	15.9	16.3	VDC
Character voltage	48VDC nominal input models		31.6	32	32.5	100
	12VDC nominal input models		01.0	02	30	
Input Curae Voltage (1000 may)	24VDC nominal input models			50	VDC	
Input Surge Voltage (1sec, max.)				100	VDC	
	48VDC nominal input models					
Input Current	No Load			See 7		
Input Filter (See Note 1)				Pi ty	/pe	
OUTPUT SPECIFICATIONS						
Output Voltage				See T	1	
Voltage Accuracy			-1.0		+1.0	%
Line Regulation	Low line to high line at full load		-0.1		+0.1	%
Load Regulation	No load to full load	3.3V & 5V Output Models	-0.2		+0.2	%
Load Regulation	No load to full load	Others	-0.1		+0.1	70
Voltage Adjustability	Maximum output deviation is inclusive	e of remote sense	-20		+10	%
Remote Sense (See Note 2)	% of Vo (nom)			10	%	
Output Power	,		See 1	able		
Output Current			See T			
Minimum Load			0	000 1	ubio	%
Maximum Capacitive Load	Minimum input and constant resistive	e load		See 1	able	70
Maximum Capacitive Load	Measured with a 22µF/25V X7R ML0			75	abic	
	·	·				
Ripple & Noise (20MHz BW)	Measured with a 22µF/25V X7R ML0			100		mVp-p
,	Measured with a 4.7µF/50V X7R ML			200		
	Measured with a 2.2µF/100V X7R M	ILCC 48V Output Models		300		
Transient Response Recovery Time	25% load step change			250		μs
Start-Up Time	Constant resistive load	Power Up		75	100	ms
otart op Timo	Constant resistive load	Remote On/Off		75	100	1110
Temperature Coefficient			-0.02		+0.02	%/°C
PROTECTION						
Short Circuit Protection			Contir	nuous, auto	omatic red	overy
Over Load Protection	% of rated lout; hiccup mode		110		140	%
Over Voltage Protection	% of Vo (nom); hiccup mode		115		130	%
Over Temperature Protection	7, 1			+110		°C
GENERAL SPECIFICATIONS						
Efficiency	Nominal input voltage and full load			See 1	able	
Switching Frequency	rvominai iriput voitage anu iuli loau		270	300	330	kHz
Switching Frequency		Input to Outre		300	330	
Isolation Voltage	1 minute (basic insulation)	Input to Output	2250			VDC
	500//00	Input/Output to Base-plate	2250			VDC
Isolation Resistance	500VDC		1		4===	GΩ
Isolation Capacitance					1500	pF
REMOTE ON/OFF (See Note 5)						
Positive Logic (standard)	Referenced to -Input pin	DC/DC ON	Open or 3~12 VDC			VDC
. 1570 Logio (otaridara)	. to or	DC/DC OFF DC/DC ON	Short or 0~1.2VDC			
Negative Logic (optional)	Referenced to –Input pin	Short or 0~1.2 VDC		VDC		
	Neierenced to -input pin	DC/DC OFF	Оре	n or 3~12	VDC	VDC
	1		0 E		4	mA
Input Current of Remote Control Pin	Nominal Vin		-0.5		1	IIIA


SPECIFICATIONS: DCQA100 SERIES


All specifications are based on 25°C, Nominal Input Voltage, and Full Load unless otherwise noted. We reserve the right to change specifications based on technological advances.


SPECIFICATION	TEST	CONDITIONS	Min	Тур	Max	Unit
ENVIRONMENTAL SPECIFICATION						
Operating Base-Plate Temperature			-40		+105	°C
Storage Temperature Range			-55		+125	°C
		Without Heatsink		9		
Thermal Immediance (Coc Note C)	Vertical direction by natural	With 0.24" Height Heatsink		7.1		°C // //
Thermal Impedance (See Note 6)	convection (20LFM)	With 0.5" Height Heatsink		5.5		°C/W
		Mounted on 2U iron base-plate		2.8		
Relative Humidity			5		95	% RH
Thermal Shock				MIL-ST	D-810F	'
Vibration				MIL-ST	D-810F	
MTBF	MIL-HDBK-217F, full load			387,30	0 Hours	
PHYSICAL SPECIFICATIONS						
Weight				2.260	z (64g)	
Dimensions (L x W x H)					x0.50 inch 3x12.7 mm	
Case Material			Aluminu		ate with pla	<i>'</i>
Potting Material				Silicon (UL94-V0)	
SAFETY & EMC CHARACTERIST	ics			,	<i>,</i>	
Safety Approvals			IEC6095	50-1, UL60	950-1 ⁽⁹⁾ , E	N60950-1
EMI (See Note 3)	EN55032				Class	A, Class B
ESD	EN61000-4-2	Air ±8kV Contact ±6kV			Perf.	Criteria A
Radiated Immunity	EN61000-4-3	20 V/m			Perf.	Criteria A
Fast Transient (See Note 4)	EN61000-4-4	±2kV			Perf.	Criteria A
Surge (See Note 4)	EN61000-4-5 EN55024: ±2kV			Perf. Criteria A		
Conducted Immunity	EN61000-4-6	Perf. Criteria A				
Power Frequency Magnetic Field	EN61000-4-8			Perf.	Criteria A	


CHARACTERISTIC CURVES

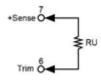
DCQA100 SERIES

OUTPUT VOLTAGE ADJUSTMENT :

Output is adjustable for 10% trim up or -20% trim down of nominal output voltage by connecting an external resistor between the TRIM pin and either the +SENSE or -SENSE pins.

With an external resistor between the TRIM and -SENSE pin, the output voltage set decreases.

With an external resistor between the TRIM and +SENSE pin, the output voltage set point increases.


Maximum output deviation is +10% inclusive of remote sense. The external trim resistor needs to be at least 1/8 of rated powerThe value of the external resistor can be obtained by the equations below.

Trim Up Equation

Trim Down Equation

$$R_{D} = \left(\frac{511}{\Delta\%} - 10.22\right) K\Omega$$

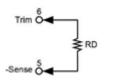
TRIM UP

3.3V Output Models												
ΔV (%)	1	2	3	4	5	6	7	8	9	10		
Vout (V)	3.333	3.366	3.399	3.432	3.465	3.498	3.531	3.564	3.597	3.630		
RU (kΩ)	869.117	436.331	292.07	219.939	176.66	147.808	127.198	111.742	99.72	90.103		

5V Output Models

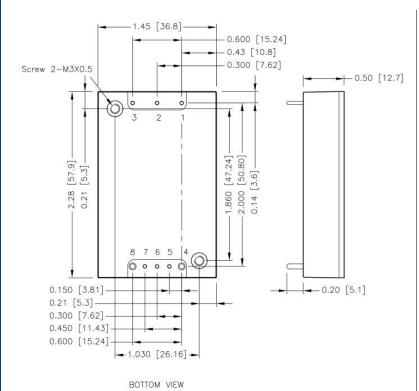
ΔV (%)	1	2	3	4	5	6	7	8	9	10
Vout (V)	5.05	5.10	5.15	5.20	5.25	5.30	5.35	5.40	5.45	5.50
RU (kΩ)	1585.35	797.994	535.542	404.316	325.58	273.09	235.596	207.479	185.605	168.109

12V Output Models											
ΔV (%)	1	2	3	4	5	6	7	8	9	10	
Vout (V)	12.12	12.24	12.36	12.48	12.60	12.72	12.84	12.96	13.08	13.20	
RU (kΩ)	4534.55	2287.19	1538.08	1163.52	938.78	788.956	681.939	601.676	539.25	489.309	


15V Outpu	15V Output Models											
ΔV (%)	1	2	3	4	5	6	7	8	9	10		
Vout (V)	15.15	15.30	15.45	15.60	15.75	15.90	16.05	16.20	16.35	16.50		
RU (kΩ)	5798.49	2925.42	1967.73	1488.89	1201.58	1010.04	873.229	770.619	690.812	626.966		

24	24V Output Models												
Δ	V (%)	1	2	3	4	5	6	7	8	9	10		
V	out (V)	24.24	24.48	24.72	24.96	25.20	25.44	25.68	25.92	26.16	26.40		
R	U (kΩ)	9590.32	4840.11	3256.7	2465	1989.98	1673.3	1447.1	1277.45	1145.5	1039.94		

30V Outpu	t Models									
ΔV (%)	1	2	3	4	5	6	7	8	9	10
Vout (V)	30.3	30.6	30.9	31.2	31.5	31.8	32.1	32.4	32.7	33
RU (kΩ)	12118.2	6116.57	4116.02	3115.74	2515.58	2115.47	1829.68	1615.33	1448.62	1315.25


48V Output Models											
ΔV (%)	1	2	3	4	5	6	7	8	9	10	
Vout (V)	48.48	48.96	49.44	49.92	50.40	50.88	51.36	51.84	52.32	52.80	
RU (kΩ)	19701.9	9945.94	6693.96	5067.97	4092.38	3441.99	2977.42	2628.99	2357.99	2141.19	

TRIM DOWN

1	2	3	4	5	6	7	8	9	10
500.78	245.28	160.113	117.53	91.98	74.947	62.78	53.655	46.558	40.88
11	12	13	14	15	16	17	18	19	20
36.235	32.363	29.088	26.28	23.847	21.718	19.839	18.169	16.675	15.33
	11	11 12	500.78 245.28 160.113 11 12 13	500.78 245.28 160.113 117.53 11 12 13 14	500.78 245.28 160.113 117.53 91.98 11 12 13 14 15	500.78 245.28 160.113 117.53 91.98 74.947 11 12 13 14 15 16	500.78 245.28 160.113 117.53 91.98 74.947 62.78 11 12 13 14 15 16 17	500.78 245.28 160.113 117.53 91.98 74.947 62.78 53.655 11 12 13 14 15 16 17 18	500.78 245.28 160.113 117.53 91.98 74.947 62.78 53.655 46.558 11 12 13 14 15 16 17 18 19

MECHANICAL DRAWING -

PIN CONNECTION

PIN	DEFINE	DIAMETER
1	-Vin	0.04 Inch
2	Ctrl	0.04 Inch
3	+Vin	0.04 Inch
4	-Vout	0.06 Inch
5	-Sense	0.04 Inch
6	Trim	0.04 Inch
7	+Sense	0.04 Inch
8	+Vout	0.06 Inch

- 1. All dimensions in inch [mm]
- 2. Tolerance: x.xx±0.02 [x.x±0.5]
- x.xxx±0.01 [x.xxx±0.25]
 3. Pin pitch tolerance: ±0.01 [0.25]
- 4. Pin dimension tolerance ±0.004 [0.10]
- 5. The screw locked torque: MAX 3.5kgf-cm [0.34N-m]

RECOMMENDED PAD LAYOUT

Notes:

All dimensions in inch [mm]

Pad size (lead free recommended)

Through Hole 1.2.3.5.6.7: Ø0.051 [1.30]

Through Hole 4.8: Ø0.075 [1.90]

Through Hole of Mounting: Ø0.126 [3.20] Top View Pad 1.2.3.5.6.7: Ø0.064 [1.63]

Top View Pad 4.8: Ø0.094 [2.38]

Top View Pad of Mounting: Groove R0.065 [1.65] L0.157 [4.00]

Bottom View Pad 1.2.3.5.6.7: Ø0.102 [2.60]

Bottom View Pad 8: Ø0.150 [3.80]

Bottom View Pad 4: Ø0.130 [3.30]

Bottom View Pad of Mounting: Groove R0.065 [1.65] L0252 [6.40]

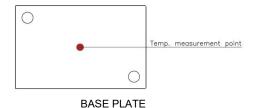
HEATSINK OPTIONS -

THERMAL CONSIDERATION -

This power module operates in a variety of thermal environments.

However, sufficient cooling should be provided to help ensure reliable operation of the unit.

Heat is removed by conduction, convection, and radiation to the surrounding environment.

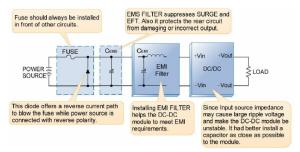

Proper cooling can be verified by measuring the point in the figure below.

The temperature at this location should not exceed 105°C.

When operating, adequate cooling must be provided to maintain the test point temperature at or below 105°C.

Although the maximum point, temperature of the power modules is 105°C, you can limit this temperature to a lower value for extremely high reliability.

- Thermal test condition with vertical direction by national convection (20LFM)
- The iron base-plate dimension is 19" x 3.5" x 0.063" (the height is EIA standard 2U)
- The heat-sink is optional and P/N: 7G-0029B-F, 7G-0030B-F, 7G-0031B-F, 7G-0032B-F



Page 6 of 15

TYPICAL APPLICATION

- Below shows some blocks connected between power source and DC/DC module. Install the circuit of the block which is required.
- Each block has individual function and should be placed on the corresponding location.
- If C_{EMI} is an aluminum electrolytic capacitor and connected in parallel with C_{EMS} , the capacitance we recommend for meeting EMS requirements could be C_{EMS} plus C_{EMI} .

Typical Application

• Input source impedance: the power modules will operate as specified without external components, assuming that the source voltage has a very low impedance and reasonable input voltage regulation. Highly inductive source impedances can affect the stability of the power module. Since real-world voltage source has finite impedance, performance can be improved by adding external filter capacitor. For this series, it is recommended to use Nippon Chemi-con KY series, 100µF/100V.

LINE PROTECTIONS

FUSE

- The DC/DC Converter is not internally fused. An input line fuse must always be used.
- Fuses should be installed in front of each module when multiple DC/DC converters connect to the same power source.

Model	Fuse Rating	Fuse Type
12VDC nominal input models	20A	Fast-Acting
24VDC nominal input models	10A	Fast-Acting
48VDC nominal input models	6.3A	Slow-Blow

According to actual current value, calculate fuse ratings based on the following equations:

 $I_{FUSE} \ge I_{in}/(Rerating x Safety margin)$

Melting $I^2t = I_{PULSE.act}^2 \cdot t/0.22$

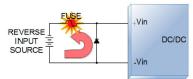
Where:

I_{FUSE} is current rating of fuse

Iin is actual value of input current

Rerating is percentage of fuse rating based on ambient temperature. Fuse rating varies under different ambient temperatures.

Safety margin is percentage of fuse rating set by user.


Melting I²t is pulse energy rating of fuse.

I_{PULSE.act} is actual input pulse current

t is the width of the input pulse current

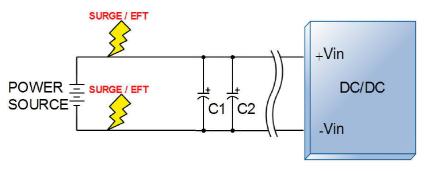
Reverse Input Voltage Protection

- Avoid the reverse polarity input voltage; otherwise, it will damage the DC/DC converter.
- It is likely to protect the module from the reverse input voltage by installing an external diode.
- The diode can blow the line fuse to protect DC/DC converter.
- It is recommended to use Schottky diode for reverse input voltage protection.

Reverse Input Voltage Protection

Model	Voltage Rating of Diode	Current Rating of Diode
12VDC nominal input models	40V	
24VDC nominal input models	60V	1∼1.5 x Fuse Rating
48VDC nominal input models	100V	

Reverse Protection Diode Selection



EMS CONSIDERATIONS

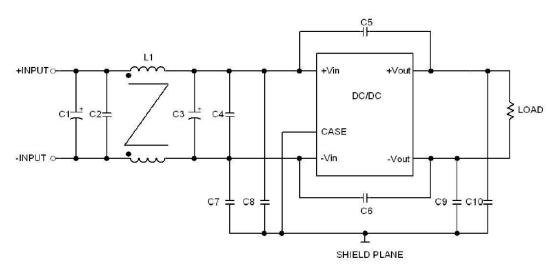
- The module can meet EMS requirements as below
- An external input filter capacitor is required if the module has to meet EN61000-4-4, EN61000-4-5

Parameter		Level	
ESD	EN61000-4-2	Air ±8kV and Contact ±6kV	Perf. Criteria A
Radiated Immunity	EN61000-4-3	20 V/m	Perf. Criteria A
Fast Transient	EN61000-4-4	±2kV	Perf. Criteria A
Surge	EN61000-4-5	EN55024: ±2kV	Perf. Criteria A
Conducted Immunity	EN61000-4-6	10 Vrms	Perf. Criteria A
Power Frequency Magnetic Field	EN61000-4-8	100A/m continuous; 1000A/m 1 sec	Perf. Criteria A

EMS Requirements

Surge & EFT Protections

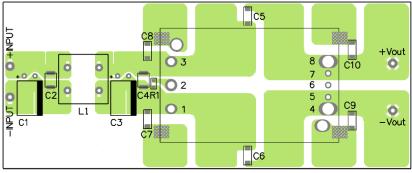
Take note of the current path of the PCB trace. Wrong PCB layout reduced ability of suppressing SURGE or EFT.

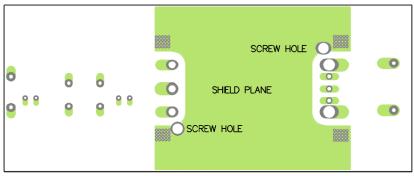


PCB Trace

Model	Component	Specification	Reference		
12VDC nominal input models			N: 01 : 10/		
24VDC nominal input models	C1, C2	220µF/100V	Nippon Chemi-con KY series		
48VDC nominal input models					
Surge & EFT Filter					

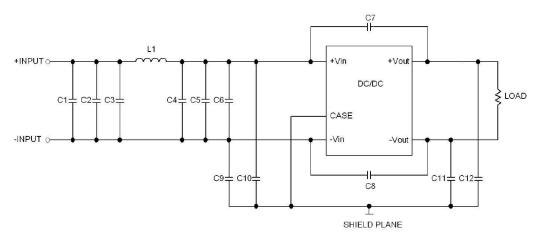
EMI CONSIDERATIONS -


Recommended External EMI Filter for EN55032 Class A


Recommended EMI Filter for EN55032 Class A

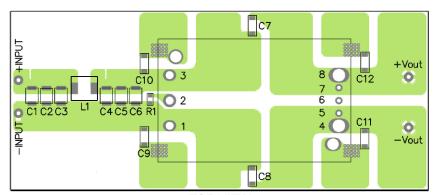
Model	C1, C3	C2, C4	C5, C6, C7, C8, C9, C10	L1
12VDC nominal input models	100µF/50V Al Cap. (lie down) Chemi-con KY	6.8µF/50V 1812 MLCC	1000pF/3kV 1808 MLCC	285µH, PMT-103

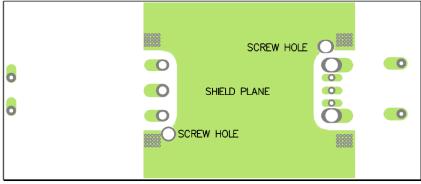
B.O.M of External EMI Filter



TOP VIEW

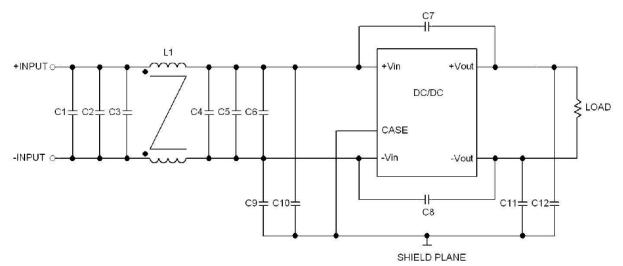
BOTTOM VIEW
Recommended Layout Pattern


Recommended External EMI Filter for EN55032 Class A


Recommended EMI Filter for EN55032 Class A

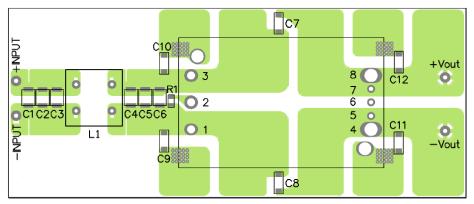
Model	C1, C2, C3, C4, C5, C6	C7, C8, C9, C10, C11, C12	L1
24VDC nominal input	10μF/50V	1000pF/3kV	O COULL DIMT 114
models	1812 MLCC	1808 MLCC	0.68µH, PMT-114

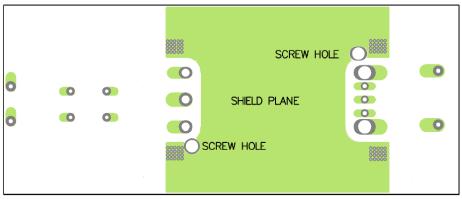
B.O.M. of External EMI Filter



TOP VIEW

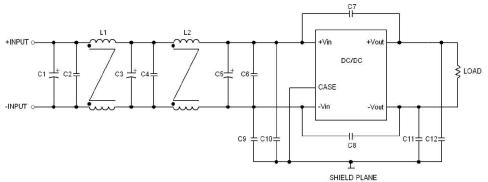
BOTTOM VIEW Recommended Layout Pattern


Recommended External EMI Filter for EN55032 Class A


Recommended EMI Filter for EN55032 Class A

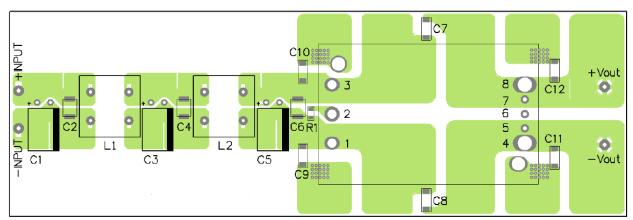
Model	C1, C2, C3, C4, C5, C6	C7, C8, C9, C10, C11, C12	L1
48VDC nominal input	4.7µF/100V	1000pF/3kV	620LL DMT 067
models	1812 MLCC	1808 MLCC	620µH, PMT-067

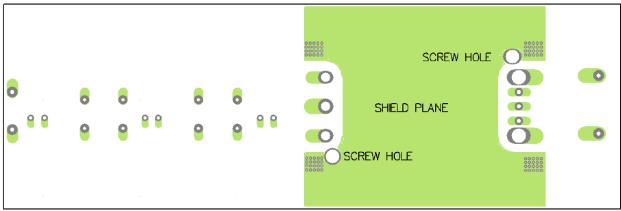
B.O.M. of External EMI Filter



TOP VIEW

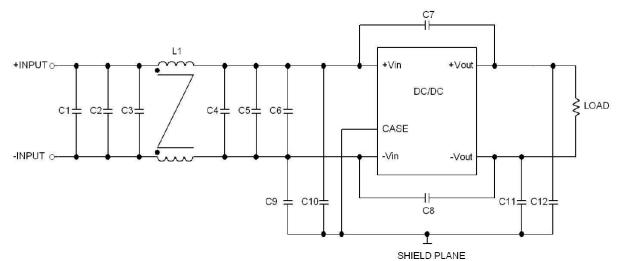
BOTTOM VIEW
Recommended Layout Pattern


Recommended External EMI Filter for EN55032 Class B


Recommended EMI Filter for EN55032 Class B

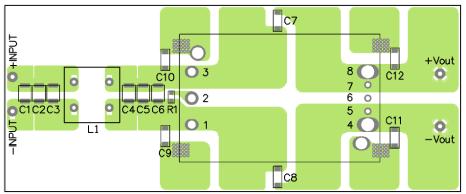
Model	C1, C3, C5	C2, C4, C6	C7, C8, C9, C10, C11, C12	L1, L2
12VDC nominal input models	100μF/50V Al Cap. (lie down) Chemi-con KY	6.8µF/50V 1812 MLCC	1000pF/3kV 1808 MLCC	285µH, PMT-103

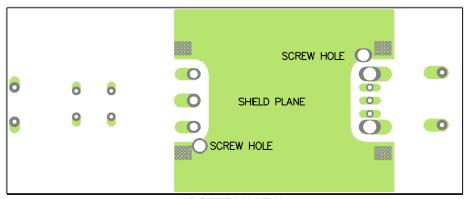
B.O.M. of External EMI Filter


TOP VIEW

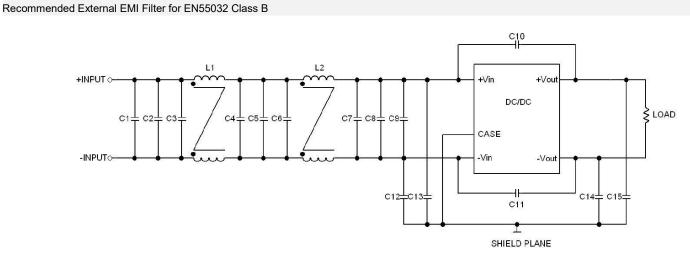
BOTTOM VIEW

Recommended Layout Pattern

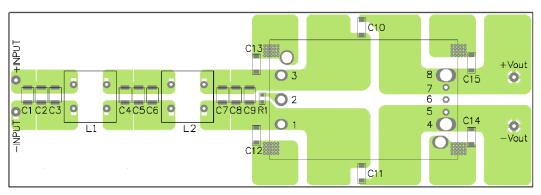


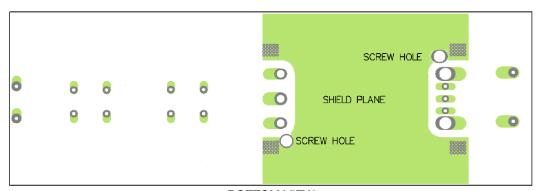

Recommended EMI Filter for EN55032 Class B

Model	C1, C2, C3, C4, C5, C6	C7, C8, C9, C10, C11, C12	L1
24VDC nominal input	10μF/50V	1000pF/3kV	620uH. PMT-067
models	1812 MLCC	1808 MLCC	020μπ, Είνι 1-00 <i>1</i>


B.O.M of External EMI Filter

TOP VIEW


BOTTOM VIEW
Recommended Layout Pattern


Recommended EMI Filter for EN55032 Class B

Model	C1, C2, C3, C4, C5, C6, C7, C8, C9	C10, C11, C12, C13, C14, C15	L1	L2
48VDC nominal input models	4.7μF/100V 1812 MLCC	1000pF/3kV 1808 MLCC	620µH, PMT-067	285µF, PMT-103

B.O.M of External EMI Filter

TOP VIEW

BOTTOM VIEW Recommended Layout Pattern

MODEL NUMBER SETUP

DCQA	100	_	48	S	05	R	H ⁽¹⁾
Series Name	Output Power		Input Voltage	Output Quantity	Output Voltage	Remote ON/OFF	Hole Thread & Heatsink Options
	100: 100 Watts		12: 8.5~22 VDC 24: 16.5~36 VDC 48: 33~75 VDC	S: Single Output	33: 3.3 VDC 05: 5 VDC 12: 12 VDC 15: 15 VDC 24: 24 VDC 30: 30 VDC 48: 48 VDC	None: Positive Logic R: Negative Logic	None: M3x0.5 Threaded-thru Inserts TH: Ø.126 Thru-hole Inserts (1) H: 0.24" Horizontal Heatsink H1: 0.5" Horizontal Heatsink H2: 0.24" Vertical Heatsink H3: 0.5" Vertical Heatsink

⁽¹⁾ Models with thru-hole inserts cannot be equipped with a heatsink.

COMPANY INFORMATION -

Wall Industries, Inc. has created custom and modified units for over 50 years. Our in-house research and development engineers will provide a solution that exceeds your performance requirements on-time and on budget. Our ISO9001: 2015 certification is just one example of our commitment to producing a high quality, well-documented product for our customers.

Our past projects demonstrate our commitment to you, our customer. Wall Industries, Inc. has a reputation for working closely with its customers to ensure each solution meets or exceeds form, fit and function requirements. We will continue to provide ongoing support for your project above and beyond the design and production phases. Give us a call today to discuss your future projects.

Contact Wall Industries for further information:

Phone: ☎(603)778-2300 Toll Free: ☎(888)597-9255 Fax: ☎(603)778-9797

E-mail: sales@wallindustries.com
Web: www.wallindustries.com
Address: 37 Industrial Drive
Exeter, NH 03833

©2019 Wall Industries, Inc. Specifications subject to change without notice. Wall Industries is not responsible for typographical errors. The information contained herein is for informational purposes only. This information is provided by Wall Industries and we make no representations or warranties of any kind, express or implied, about the completeness, accuracy, reliability, suitability or availability with respect to the information contained in this document for any purpose. All product and manufacturer names are trademarks or registered trademarks of their respective companies.