

SPW48S12-100TH

100W DC-DC Converter 18-75 Vdc Input 12 Vdc Output at 8.333A Half-Brick Package

Features:

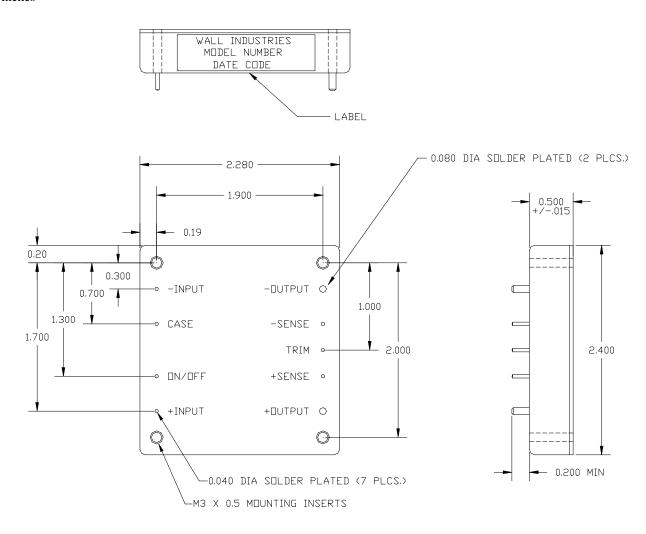
- 82% Efficient at Full Load
- Fast Transient Response
- Operation to No Load
- 100% Burn In
- Remote ON/OFF (Active High/Low)
- Remote Sense Compensation
- UL 1950 Listed CE Mark

- Low Output Ripple
- Fixed Switching Frequency
- Output Over Current Protection
- Output Short Circuit Protection
- Over Temperature Protection
- 1500 Vdc Isolation
- Test Board Available

Description:

The SPW series is a high-density half brick converter that incorporates the desired features required in today's demanding applications. When performance, reliability, and low cost are needed, the SPW series delivers.

APPLICATION NOTESSP & SPW SERIES


Technical Specifications	Model No.	SPW48S12-100TH			
	are based on 25C, Nominal Line and Full			ted.	
	the right to change specifications based on	technologica	al advances.		
SPECIFICATION	Related condition				
		MIN	NOM	MAX	Unit Measured
INPUT					
Turn on at			17		Volt DC
Turn off at			16		Volt DC
Input Over voltage Shutdown			10		VOILDO
Turn off at			79		Volt DC
Turn on at			78		Volt DC
Operating Voltage Range	Rated Input Voltage	18	48	75	Volt DC
Maximum Input Current	Low Line 100% load	1	7		A
No Load Input Current	2011 21110 10070 1000		28		mA
Input Current under "LOGIC OFF"			1		mA
Inrush Current Transient Rating			1		A ² Sec
Reflected Ripple Current	12uH / 33uF input filter		21		mA
OUTPUT	12a. 17 doar input intol				1101
Output Voltage Set point		11.88	12	12.12	Volt DC
Output Voltage Regulation		11.00	14	14.14	VOIL DC
Over Load			± 0.1		%
Over Line			± 0.1		%
Over Temperature			0.02		% / °C
Output Voltage Ripple and Noise			0.02		/0 / C
Basic Ripple			60		mV
Spikes P-P			130	180	mV
Output Current Ranges	Rated Output Current	0	130	8.333	A
Output Current Nanges Output Current Limit	Self Resetting	10	11.666	13.333	A
Short Term Output Current Surge	Oen Resetting	10	11.000	13.333	A/sec
DYNAMIC CHARACTERISTICS					Avsec
Input Voltage Ripple Rejection	120 Hz		60		dB
Output Transient and Load Changes	120112		- 00		ub
·	X 50 to 75% 50 to 100%		140		mV
Load step / \(\Delta \)	X 75 to 50% 100 to 50 %		155		mV
Load step / \(\Delta \) V Recovery Time	To within 1% Rated Vo				
•			125		μsec
Turn on Delay	From Vin(nom) to 90% Vout (nom)		210		msec
Overshoot of Output Voltage	Full Load Resistive		0	r	%
EFFICIENCY					
@ 100% load			82		%
@ 75% load			83		%
@ 50% load			83		%
@ 25% load			80		%
TEMPERATURE CONSIDERATIONS					
Thermal Resistance					
Normal Convection	Rθc-a		7.5		°C/Watt
100 lfm			6.2		°C/Watt
200 lfm			5.1		°C/Watt
300 lfm			4.3		°C/Watt
400 lfm			3.5		°C/Watt
Heatsink Considerations	Available, Contact Factory				
General Technical Data					
Switching Frequency	Fixed		400		KHz
Remote ON OFF Control (See Note Below)	Active HIGH, Open Collector				TTL
Trimmablility	·	10.8		13.2	Volt DC
Over Temperature Shutdown	Case Temperature			105	°C
MTBF					
	Bellcore TR-332		3.51E6		Hours

Note: Positive Remote ON/OFF control is standard. To order negative logic Remote ON/OFF control add the suffix "R" to the part number.

APPLICATION NOTES SP & SPW SERIES

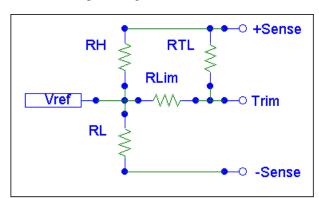
Figure 1: Mechanical Dimensions

Unit: inches

Tolerance: X.XX ±0.020 X.XXX±0.010

Output Voltage Trim

The following information is provided to allow quick calculation of the trim resistor value for a desired output voltage. The general procedure for calculating a trim resistor is as follows:

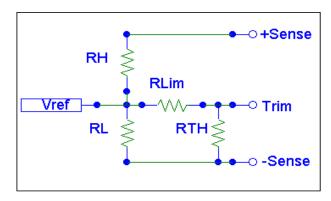

- 1. Determine the desired output voltage (Vo)
- 2. Select Equation. (Trim Low/Trim High)
- 3. Use the data in Table 1 to complete the equation.
- 4. Evaluate.

In order to trim low use Equation 1 and Table 1 to calculate resistor RTL for the desired output voltage.

Equation 1: Trim Low

$$RT_{L} = \left[\frac{V_{o} - V_{REF}}{(V_{REF}/R_{L}) - (V_{RH} \cdot (V_{o} - V_{REF}))}\right] - R_{LIM}$$

Vo - Desired output voltage. All resistor values in K ohms.


Schematic 1: Trim Low

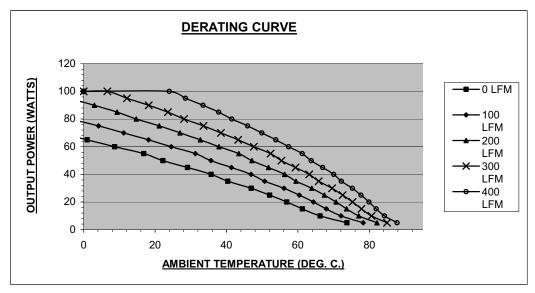
In order to trim high use Equation 2 and Table 1 to calculate resistor RTH for the desired output voltage.

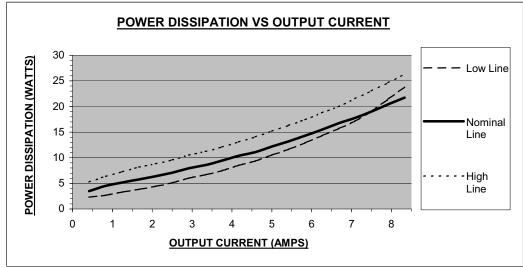
Equation 2: Trim High

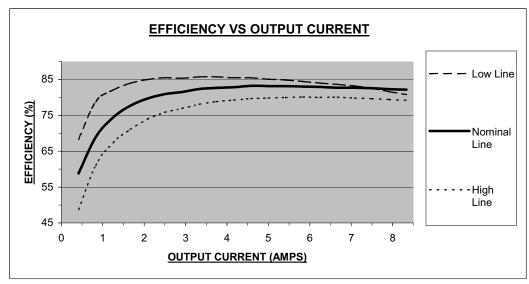
$$RT_{H} = \left[rac{V_{REF}}{\left(rac{V_{o} - V_{REF}}{R_{H}}
ight) - \left(rac{V_{REF}}{R_{L}}
ight)}
ight] - R_{LIM}$$

Vo - Desired output voltage. All resistor values in K ohms.

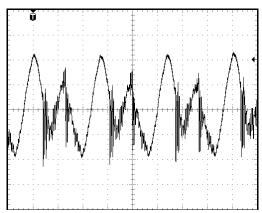
Schematic 2: Trim High

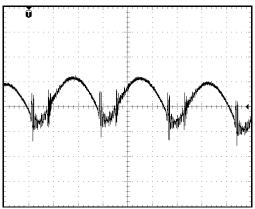

MODEL	$\mathbf{R}_{\mathbf{H}}$	$\mathbf{R}_{\mathbf{LIM}}$	R_{L}	$\mathbf{V}_{\mathbf{REF}}$
(Output Voltage)	(K OHMS)	(K OHMS)	(K OHMS)	(VOLTS)
3.3V	0.750	0.499	2.32	2.495
5.0V	2.49	10.0	2.49	2.495
8.0V	5.49	10.0	2.49	2.495
9.0V	6.49	10.0	2.49	2.495
12.0V	9.53	13.7	2.49	2.495
15.0V	12.4	13.7	2.49	2.495
24.0V	21.5	15.4	2.49	2.495
26.0V	17.6	15.4	1.87	2.495
32.0V	23.7	12.7	2.00	2.495

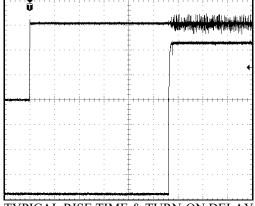

Table 1: Trim Low/High Data Table.

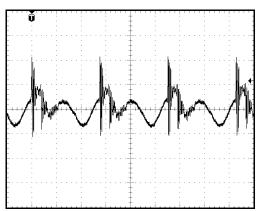

Note: Output trim +/- 10% max.

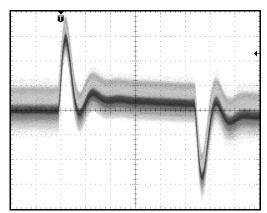
APPLICATION NOTES

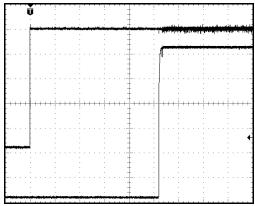

SP & SPW SERIES



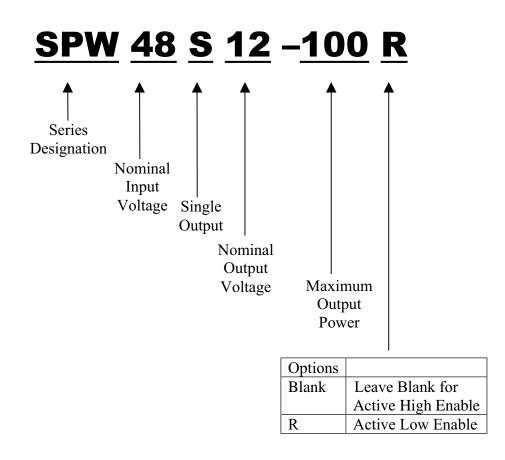

APPLICATION NOTESSP & SPW SERIES


TYPICAL OUTPUT RIPPLE 20mV/div, 1uS/div, full load, 18Vin 10uF // 0.1uF decoupling cap at room temp


TYPICAL INPUT RIPPLE CURRENT 10mA/div, 1uS/div, full load 48Vin at room temp with a 12uH / 33uF input filter


TYPICAL RISE TIME & TURN-ON DELAY USING LOGIC ENABLE 2V/div, 40mS/div (Vout), 2V/div 40mS/div (logic enable) 18Vin, full load at room temp

TYPICAL OUTPUT RIPPLE 50mV/div, 1uS/div, full load 75Vin 10uF // 0.1uF decoupling cap at room temp


TYPICAL TRANSIENT RESPONSE 50mV/div, 200uS/div, 50% full load to 75% full load 48Vin room temp

TYPICAL RISE TIME & TURN-ON DELAY WITH Vin 0-48V 2V/div, 40mS/div (Vout), 10V/div, 40mS/div (Vin) at room temp

Ordering Information:

Part Number Example:

Company Information:

Wall Industries, Inc. has created custom and modified units for over 40 years. Our in-house research and development engineers will provide a solution that exceeds your performance requirements on time and on budget. Our ISO9001-2000 certification is just one example of our commitment to producing a high quality, well documented product for our customers.

Our past projects demonstrate our commitment to you, our customer. Wall Industries, Inc. has a reputation for working closely with its customers to ensure each solution meets or exceeds form, fit and function requirements. We will continue to provide ongoing support for your project above and beyond the design and production phases. Give us a call today to discuss your future projects.

Contact Wall Industries for further information:

E-mail: sales@wallindustries.com
Web: www.wallindustries.com
Address: 5 Watson Brook Rd.

Exeter, NH 03833